Full Text:   <523>

Summary:  <199>

CLC number: 

On-line Access: 2023-12-29

Received: 2023-11-20

Revision Accepted: 2023-12-06

Crosschecked: 2024-01-04

Cited: 0

Clicked: 567

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Liang Ma

https://orcid.org/0000-0002-6242-1850

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.12 P.1065-1078

http://doi.org/10.1631/jzus.A2300589


Enhanced mixing efficiency for a novel 3D Tesla micromixer for Newtonian and non-Newtonian fluids


Author(s):  Abdellah AAZMI, Zixian GUO, Haoran YU, Weikang LV, Zengchen JI, Huayong YANG, Liang MA

Affiliation(s):  State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   liangma@zju.edu.cn

Key Words:  Micromixing, 3D printing, Non-Newtonian fluids, Computational fluid dynamics


Abdellah AAZMI, Zixian GUO, Haoran YU, Weikang LV, Zengchen JI, Huayong YANG, Liang MA. Enhanced mixing efficiency for a novel 3D Tesla micromixer for Newtonian and non-Newtonian fluids[J]. Journal of Zhejiang University Science A, 2023, 24(12): 1065-1078.

@article{title="Enhanced mixing efficiency for a novel 3D Tesla micromixer for Newtonian and non-Newtonian fluids",
author="Abdellah AAZMI, Zixian GUO, Haoran YU, Weikang LV, Zengchen JI, Huayong YANG, Liang MA",
journal="Journal of Zhejiang University Science A",
volume="24",
number="12",
pages="1065-1078",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300589"
}

%0 Journal Article
%T Enhanced mixing efficiency for a novel 3D Tesla micromixer for Newtonian and non-Newtonian fluids
%A Abdellah AAZMI
%A Zixian GUO
%A Haoran YU
%A Weikang LV
%A Zengchen JI
%A Huayong YANG
%A Liang MA
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 12
%P 1065-1078
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300589

TY - JOUR
T1 - Enhanced mixing efficiency for a novel 3D Tesla micromixer for Newtonian and non-Newtonian fluids
A1 - Abdellah AAZMI
A1 - Zixian GUO
A1 - Haoran YU
A1 - Weikang LV
A1 - Zengchen JI
A1 - Huayong YANG
A1 - Liang MA
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 12
SP - 1065
EP - 1078
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300589


Abstract: 
The fabrication of constructs with gradients for chemical, mechanical, or electrical composition is becoming critical to achieving more complex structures, particularly in 3D printing and biofabrication. This need is underscored by the complexity of in vivo tissues, which exhibit heterogeneous structures comprised of diverse cells and matrices. Drawing inspiration from the classical Tesla valve, our study introduces a new concept of micromixers to address this complexity. The innovative micromixer design is tailored to enhance the re-creation of in vivo tissue structures and demonstrates an advanced capability to efficiently mix both Newtonian and non-Newtonian fluids. Notably, our 3D Tesla valve micromixer achieves higher mixing efficiency with fewer cycles, which represents a significant improvement over the traditional mixing method. This advance is pivotal for the field of 3D printing and bioprinting, and offers a robust tool that could facilitate the development of gradient hydrogel-based constructs that could also accurately mimic the intricate heterogeneity of natural tissues.

一种能显著提升牛顿和非牛顿流体混合效率的新型3D特斯拉微混匀器

作者:Abdellah AAZMI1,2,郭子贤1,2,于浩然1,2,吕为康1,2,季增琛1,2,杨华勇1,2,马梁1,2
机构:1浙江大学,流体动力与机电系统国家重点实验室,中国杭州,310058;2浙江大学,机械工程学院,中国杭州,310058
目的:使用梯度结构水凝胶打印制造具有生物活性的梯度结构是生物制造领域的研究热点之一,但传统用于挤出式生物3D打印的混匀器仍具有混合不充分、不适用于高粘性生物墨水等缺陷。本文旨在提出一种新型的特斯拉混匀器结构,并通过计算流体力学(CFD)仿真与实验来验证其混合性能以及对不同特性流体的适应性,为生物3D打印自然生物组织的复杂异质结构提供一个可靠的工具。
创新点:1.以传统特斯拉阀为灵感,引入相似结构设计微流控混匀器来实现更高效的混合。2.利用CFD模拟与实际实验,广泛地验证该混匀器对于不同特性流体的适应性。3.通过在CIELab中进行颜色均匀性的检查,证明混匀器能够精确地实现不同组分比例的混合,发掘了其在生物打印领域的应用潜力。
方法:1.通过数值方法与CFD分析进行建模与仿真,以及通过实验测量压降,验证CFD建模的正确性(图3),并测定不同混合周期下的混合效率(图4);2.通过仿真分析,分别测定不同流速下流体的混合效果、雷诺数与皮克列数,分析混合的流体力学机理,验证其对牛顿流体与非牛顿流体的出色混合性能,并探讨最佳混合效果对应的参数;3.制造3D特斯拉混匀器实物并进行实验验证,检验其实际打印的可行性与应用优势,并进一步验证其混合均匀性与精确性。
结论:1.新型特斯拉混匀器能用很少的混合周期达到较高的混合效率;2.混匀器适用于不同粘度和扩散系数的牛顿流体和流变特性变化的非牛顿流体,且具有出色混合性能;3.打印液滴颜色均匀性的评估结果验证了该混匀器在混合材料组分控制上的精确性。

关键词:微观混合;3D打印;非牛顿流体;计算流体力学(CFD)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AazmiA, ZhouHZ, LvWK, et al., 2022. Vascularizing the brain in vitro. iScience, 25(4):104110.

[2]AazmiA, ZhangD, MazzagliaC, et al., 2024. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioactive Materials, 31:475-496.

[3]AbolpourB, HekmatkhahR, ShamsoddiniR, 2022. Optimum design for the Tesla micromixer. Microfluidics and Nanofluidics, 26(6):46.

[4]AgrawalR, KumarA, MohammedMKA, et al., 2023. Biomaterial types, properties, medical applications, and other factors: a recent review. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 24(11):1027-1042.

[5]ArmeniadesCD, JohnsonWC, ThomasR, 1966. Mixing Device. US Patent 3286992.

[6]BayarehM, AshaniMN, UsefianA, 2020. Active and passive micromixers: a comprehensive review. Chemical Engineering and Processing-Process Intensification, 147:107771.

[7]BeckerE, 1980. Simple non-Newtonian fluid flows. Advances in Applied Mechanics, 20:177-226.

[8]Bolívar-MonsalveEJ, Ceballos-GonzálezCF, Borrayo-MontañoKI, et al., 2021. Continuous chaotic bioprinting of skeletal muscle-like constructs. Bioprinting, 21:e00125.

[9]BuglieWLN, TamrinKF, SheikhNA, et al., 2022. Enhanced fluid mixing using a reversed multistage Tesla micromixer. Chemical Engineering & Technology, 45(7):1255-1263.

[10]Chávez-MaderoC, de León-DerbyMD, SamandariM, et al., 2020. Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro- and nanostructures: continuous chaotic printing. Biofabrication, 12(3):035023.

[11]ChenYB, NiuZH, JiangWQ, et al., 2021. 3D-printed models improve surgical planning for correction of severe postburn ankle contracture with an external fixator. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 22(10):866-875.

[12]Florián-AlgarínV, AcevedoA, 2010. Rheology and thermotropic gelation of aqueous sodium alginate solutions. Journal of Pharmaceutical Innovation, 5(1):37-44.

[13]HolmbergS, Garza-FloresNA, AlmajhadiMA, et al., 2021. Fabrication of multilayered composite nanofibers using continuous chaotic printing and electrospinning: chaotic electrospinning. ACS Applied Materials & Interfaces, 13(31):37455-37465.

[14]KhandelwalV, DhimanA, BaranyiL, 2015. Laminar flow of non-Newtonian shear-thinning fluids in a T-channel. Computers & Fluids, 108:79-91.

[15]KingRP, 2002. Non-Newtonian slurries. In: King RP (Ed.), Introduction to Practical Fluid Flow. Butterworth-Heinemann, Oxford, UK, p.117-157.

[16]KokkinisD, BouvilleF, StudartAR, 2018. 3D printing of materials with tunable failure via bioinspired mechanical gradients. Advanced Materials, 30(19):1705808.

[17]LiuWJ, ZhangYS, HeinrichMA, et al., 2017. Rapid continuous multimaterial extrusion bioprinting. Advanced Materials, 29(3):1604630.

[18]MaJY, LinYB, ChenXL, et al., 2014. Flow behavior, thixotropy and dynamical viscoelasticity of sodium alginate aqueous solutions. Food Hydrocolloids, 38:119-128.

[19]MehtaV, RathSN, 2021. 3D printed microfluidic devices: a review focused on four fundamental manufacturing approaches and implications on the field of healthcare. Bio-Design and Manufacturing, 4(2):311-343.

[20]MonzónM, 2018. Biomaterials and additive manufacturing: osteochondral scaffold innovation applied to osteoarthritis (BAMOS project). Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(4):329-330.

[21]NguyenNT, WuZG, 2005. Micromixers—a review. Journal of Micromechanics and Microengineering, 15(2):R1-R16.

[22]NyandeBW, ThomasKM, LakerveldR, 2021. CFD analysis of a kenics static mixer with a low pressure drop under laminar flow conditions. Industrial & Engineering Chemistry Research, 60(14):5264-5277.

[23]PoologasundarampillaiG, HaweetA, JayashSN, et al., 2021. Real-time imaging and analysis of cell-hydrogel interplay within an extrusion-bioprinting capillary. Bioprinting, 23:e00144.

[24]RamezaniH, ZhouLY, ShaoL, et al., 2020. Coaxial 3D bioprinting of organ prototyps from nutrients delivery to vascularization. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(11):859-875.

[25]RastogiP, KandasubramanianB, 2019. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication, 11(4):042001.

[26]Rodríguez-RiveroC, HilliouL, Martín del ValleEM, et al., 2014. Rheological characterization of commercial highly viscous alginate solutions in shear and extensional flows. Rheologica Acta, 53(7):559-570.

[27]Sánchez-SánchezR, Rodríguez-RegoJM, Macías-GarcíaA, et al., 2023. Relationship between shear-thinning rheological properties of bioinks and bioprinting parameters. International Journal of Bioprinting, 9(2):687.

[28]Skylar-ScottMA, MuellerJ, VisserCW, et al., 2019. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature, 575(7782):330-335.

[29]TavafoghiM, DarabiMA, MahmoodiM, et al., 2021. Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs. Biofabrication, 13(4):042002.

[30]ValdésJP, KahouadjiL, MatarOK, 2022. Current advances in liquid–liquid mixing in static mixers: a review. Chemical Engineering Research and Design, 177:694-731.

[31]XiongYT, KangHY, ZhouHZ, et al., 2022. Recent progress on microfluidic devices with incorporated 1D nanostructures for enhanced extracellular vesicle (EV) separation. Bio-Design and Manufacturing, 5(3):607-616.

[32]ZhangB, XueQ, HuHY, et al., 2019. Integrated 3D bioprinting-based geometry-control strategy for fabricating corneal substitutes. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 20(12):945-959.

[33]ZhangHL, YaoY, HuiY, et al., 2022. A 3D-printed microfluidic gradient concentration chip for rapid antibiotic-susceptibility testing. Bio-Design and Manufacturing, 5(1):210-219.

[34]ZhouHZ, LiuP, GaoZQ, et al., 2022. Simultaneous multimaterial multimethod bioprinting. Bio-Design and Manufacturing, 5(3):433-436.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE