Full Text:   <4311>

CLC number: Q96; Q51

On-line Access: 

Received: 2008-10-07

Revision Accepted: 2009-02-23

Crosschecked: 2009-04-28

Cited: 10

Clicked: 6426

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2009 Vol.10 No.6 P.445-453


Proteome changes in the plasma of Papilio xuthus (Lepidoptera: Papilionidae): effect of parasitization by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae)

Author(s):  Jia-ying ZHU, Gong-yin YE, Qi FANG, Cui HU

Affiliation(s):  State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China

Corresponding email(s):   chu@zju.edu.cn

Key Words:  Proteomics, Plasma, Parasitism, Immune response, Pteromalus puparum, Papilio xuthus

Jia-ying ZHU, Gong-yin YE, Qi FANG, Cui HU. Proteome changes in the plasma of Papilio xuthus (Lepidoptera: Papilionidae): effect of parasitization by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae)[J]. Journal of Zhejiang University Science B, 2009, 10(6): 445-453.

@article{title="Proteome changes in the plasma of Papilio xuthus (Lepidoptera: Papilionidae): effect of parasitization by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae)",
author="Jia-ying ZHU, Gong-yin YE, Qi FANG, Cui HU",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Proteome changes in the plasma of Papilio xuthus (Lepidoptera: Papilionidae): effect of parasitization by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae)
%A Jia-ying ZHU
%A Gong-yin YE
%A Cui HU
%J Journal of Zhejiang University SCIENCE B
%V 10
%N 6
%P 445-453
%@ 1673-1581
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820314

T1 - Proteome changes in the plasma of Papilio xuthus (Lepidoptera: Papilionidae): effect of parasitization by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae)
A1 - Jia-ying ZHU
A1 - Gong-yin YE
A1 - Qi FANG
A1 - Cui HU
J0 - Journal of Zhejiang University Science B
VL - 10
IS - 6
SP - 445
EP - 453
%@ 1673-1581
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820314

Although the biochemical dissection of parasitoid-host interactions is becoming well characterized, the molecular knowledge concerning them is minimal. In order to understand the molecular bases of the host immune response to parasitoid attack, we explored the response of Papilio xuthus parasitized by the endoparasitic wasp Pteromalus puparum using proteomic approach. By examining the differential expression of plasma proteins in the parasitized and unparasitized host pupae by two-dimensional (2D) electrophoresis, 16 proteins were found to vary in relation to parasitization compared with unparasitized control samples. All of them were submitted to identification by mass spectrometry coupled with a database search. The modulated proteins were found to fall into the following functional groups: humoral or cellular immunity, detoxification, energy metabolism, and others. This study contributes insights into the molecular mechanism of the relationships between parasitoids and their host insects.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Ahmad, R., Ennaciri, J., Cordeiro, P., Bassam, S.E., Menezes, J., 2007. Herpes simplex virus-1 up-regulates IL-15 gene expression in monocytic cells through the activation of protein tyrosine kinase and PKC Zeta/Lambda signaling pathways. J. Mol. Biol., 367(1):25-35.

[2] Amparyup, P., Jitvaropas, R., Pulsook, N., Tassanakajon, A., 2007. Molecular cloning, characterization and expression of a masquerade-like serine proteinase homologue from black tiger shrimp Penaeus monodon. Fish Shellfish Immunol., 22(5):535-546.

[3] Asgari, S., 2006. Venom proteins from polydnavirus-producing endoparasitoids: their role in host-parasite interactions. Arch. Insect Biochem. Physiol., 61(3): 146-156.

[4] Ashida, M., Brey, P.T., 1998. Recent Advances on the Research of the Insect Prophenoloxidase Cascade. In: Brey, P.T., Hultmark, D. (Eds.), Molecular Mechanisms of Immune Responses in Insects. Chapman and Hall, London, p.135-172.

[5] Barat-Houari, M., Hilliou, F., Jousset, F.X., Sofer, L., Deleury, E., Rocher, J., Ravallec, M., Galibert, L., Delobel, P., Feyereisen, R., Fournier, P., Volkoff, A.N., 2006. Gene expression profiling of Spodoptera frugiperda hemocytes and fat body using cDNA microarray reveals polydnavirus-associated variations in lepidopteran host genes transcript levels. BMC Genomics, 7(1):160.

[6] Beckage, N.E., Gelman, D.B., 2004. Wasp parasitoid disruption of host development: implications for new biologically based strategies for insect control. Ann. Rev. Entomol., 49(1):299-330.

[7] Beis, A., Zammit, V.A., Newsholme, E.A., 1980. Activities of 3-hydroxybutyrate dehydrogenase, 3-oxoacid CoA-transferase and acetoacetyl-CoA thiolase in relation to ketone-body utilization in muscles from vertebrates and invertebrates. Eur. J. Biochem., 104(1):209-215.

[8] Cai, J., Ye, G.Y., Hu, C., 2004. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): effects of parasitization and venom on host hemocytes. J. Insect Physiol., 50(4):315-322.

[9] Carlier, M.F., 1998. Control of actin dynamics. Curr. Opin. Cell Biol., 10(1):45-51.

[10] Carton, Y., Poirié, M., Nappi, A.J., 2008. Insect immune resistance to parasitoids. Insect Science, 15(1):67-87.

[11] Chen, Y.N., Aulia, S., Li, L.Z., Tang, B.L., 2006. AMIGO and friends: an emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs. Brain Res. Rev., 51(2):265-274.

[12] Corona, M., Robinson, G.E., 2006. Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Mol. Biol., 15(5):687-701.

[13] de Morais Guedes, S., Vitorino, R., Domingues, R., Tomer, K., Correia, A.J.F., Amado, F., Domingues, P., 2005. Proteomics of immune-challenged Drosophila melanogaster larvae hemolymph. Biochem. Biophys. Res. Commun., 328(1):106-115.

[14] Dong, K., Zhang, D.Q., Dahlman, D.L., 1996. Down-regulation of juvenile hormone esterase and arylphorin production in Heliothis virescens larvae parasitized by Microplitis croceipes. Arch. Insect Biochem. Physiol., 32(2):237-248.

[15] Doucet, D., Béliveau, C., Dowling, A., Simard, J., Feng, Q.L., Krell, P.J., Cusson, M., 2008. Prophenoloxidases 1 and 2 from the spruce budworm, Choristoneura fumiferana: molecular cloning and assessment of transcriptional regulation by a polydnavirus. Arch. Insect Biochem. Physiol., 67(4):188-201.

[16] Francis, F., Gerkens, P., Harmel, N., Mazzucchelli, G., de Pauw, E., Haubruge, E., 2006. Proteomics in Myzus persicae: effect of aphid host plant switch. Insect Biochem. Mol. Biol., 36(3):219-227.

[17] Gunsalus, K.C., Bonaccorsi, S., Williams, E., Verni, F., Gatti, M., Goldberg, M.L., 1995. Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. J. Cell Biol., 131(5):1243-1259.

[18] Gupta, S., Wang, Y., Jiang, H.B., 2005. Manduca sexta prophenoloxidase (proPO) activation requires proPO-activating proteinase (PAP) and serine proteinase homologs (SPHs) simultaneously. Insect Biochem. Mol. Biol., 35(3):241-248.

[19] Gurniak, C.B., Perlas, E., Witke, W., 2005. The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev. Biol., 278(1):231-241.

[20] Hu, C., 1984. Life history and occurrence of Pteromalus puparum L. in Hangzhou. Acta Entomol. Sinica, 27(3):302-307 (in Chinese).

[21] Kaeslin, M., Pfister-Wilhelm, R., Molina, D., Lanzrein, B., 2005. Changes in the haemolymph proteome of Spodoptera littoralis induced by the parasitoid Chelonus inanitus or its polydnavirus and physiological implications. J. Insect Physiol., 51(9):975-988.

[22] Klose, R.J., Yan, Q., Tothova, Z., Yamane, K., Erdjument-Bromage, H., Tempst, P., Gilliland, D.G., Zhang, Y., Kaelin, W.G., 2007. The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell, 128(5):889-900.

[23] Kucharski, R., Maleszka, R., 1998. Arginine kinase is highly expressed in the compound eye of the honey bee, Apis mellifera. Gene, 211(2):343-349.

[24] Lavine, M.D., Beckage, N.E., 1995. Polydvaviruses-potent mediators of host insect immune dysfunction. Parasitol. Today, 11(10):368-378.

[25] Lavine, M.D., Strand, M.R., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol., 32(10): 1295-1309.

[26] Lee, K.S., Kim, S.R., Park, N.S., Kim, I., Kang, P.D., Sohn, B.H., Choi, K.H., Kang, S.W., Je, Y.H., Lee, S.M., Sohn, H.D., Jin, B.R., 2005. Characterization of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection. Insect Biochem. Mol. Biol., 35(1):73-84.

[27] Liu, C.I., Cheng, T.L., Chen, S.Z., Huang, Y.C., Chang, W.T., 2005. LrrA, a novel leucine-rich repeat protein involved in cytoskeleton remodeling, is required for multicellular morphogenesis in Dictyostelium discoideum. Dev. Biol., 285(1):238-251.

[28] Mansfield, S.G., Cammer, S., Alexander, S.C., Muehleisen, D.P., Gray, R.S., Tropsha, A., Bollenbacher, W.E., 1998. Molecular cloning and characterization of an invertebrate cellular retinoic acid binding protein. Proc. Natl. Acad. Sci. USA, 95(12):6825-6830.

[29] Moreau, S.J., Guillot, S., 2005. Advances and prospects on biosynthesis, structures and functions of venom proteins from parasitic wasps. Insect Biochem. Mol. Biol., 35(11): 1209-1223.

[30] Müller, S., 2004. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol. Microbiol., 53(5):1291-1305.

[31] Munks, R.J., Sant(Anna, M.R., Grail, W., Gibson, W., Igglesden, T., Yoshiyama, M., Lehane, S.M., Lehane, M.J., 2005. Antioxidant gene expression in the blood-feeding fly Glossina morsitans morsitans. Insect Mol. Biol., 14(5):483-491.

[32] Nakamatsu, Y., Kuriya, K., Harvey, J.A., Tanaka, T., 2006. Influence of nutrient deficiency caused by host developmental arrest on the growth and development of a koinobiont parasitoid. J. Insect Physiol., 52(11-12): 1105-1112.

[33] Nguyen, T.T., Boudreault, S., Michaud, D., Cloutier, C., 2008. Proteomes of the aphid Macrosiphum euphorbiae in its resistance and susceptibility responses to differently compatible parasitoids. Insect Biochem. Mol. Biol., 38(7): 730-739.

[34] Pellitteri-Hahn, M.C., Warren, M.C., Didier, D.N., Winkler, E.L., Mirza, S.P., Greene, A.S., Olivier, M., 2006. Improved mass spectrometric proteomic profiling of the secretome of rat vascular endothelial cells. J. Proteome Res., 5(10):2861-2864.

[35] Pennacchio, F., Strand, M.R., 2006. Evolution of developmental strategies in parasitic Hymenoptera. Ann. Rev. Entomol., 51(1):233-258.

[36] Reineke, A., Löbmann, S., 2005. Gene expression changes in Ephestia kuehniella caterpillars after parasitization by the endoparasitic wasp Venturia canescens analyzed through cDNA-AFLPs. J. Insect Physiol. 51(8):923-932.

[37] Rodriguez, J., Agudo, M., van Damme, J., Vandekerckhove, J., Santarén, J.F., 2000. Polypeptides differentially expressed in imaginal discs define the peroxiredoxin family of genes in Drosophila. Eur. J. Biochem., 267(2): 487-497.

[38] Roesch, A., Becker, B., Meyer, S., Wild, P., Hafner, C., Landthaler, M., Vogt, T., 2005. Retinoblastoma-binding protein 2-homolog 1: a retinoblastoma-binding protein downregulated in malignant melanomas. Mod. Pathol., 18(9):1249-1257.

[39] Salvador, G., Cônsoli, F.L., 2008. Changes in the hemolymph and fat body metabolites of Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) parasitized by Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). Biol. Control, 45(1):103-110.

[40] Schlenke, T.A., Morales, J., Govind, S., Clark, A.G., 2007. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog., 3(10):1486-1501.

[41] Schmidt, O., 2006. At the core of parasitoid-host interactions. Arch. Insect Biochem. Physiol., 61(3):107-109.

[42] Sharma, R., Komatsu, S., Nod, H., 2004. Proteomic analysis of brown planthopper: application to the study of carbamate toxicity. Insect Biochem. Mol. Biol., 34(5): 425-432.

[43] Shevchenko, A., Wilm, M., Vorm, O., Mann, M., 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem., 68(5):850-858.

[44] Shimizu-Hirota, R., Sasamura, H., Kuroda, M., Kobayashi, E., Saruta, T., 2004. Functional characterization of podocan, a member of a new class in the small leucine-rich repeat protein family. FEBS Lett., 563(1-3):69-74.

[45] Song, K.H., Jung, M.K., Eum, J.H., Hwang, I.C., Sik-Han, S., 2008. Proteomic analysis of parasitized Plutella xylostella larvae plasma. J. Insect Physiol., 54(8):1271-1280.

[46] Stettler, P., Trenczek, T., Wyler, T., Trenczek, T., Stettler, P., 1998. Overview of parasitism associated effects on host haemocytes in larval parasitoids and comparison with effects of the egg-larval parasitoid Chelonus inanitus on its host Spodoptera littoralis. J. Insect Physiol., 44(9): 817-831.

[47] Tang, Q.Y., Feng, M.G., 2007. DPS© Data Processing System: Experimental Design, Statistical Analysis Data Mining (http://www.chinadps.net). Science Press, Beijing, China.

[48] Turnbull, M., Webb, B., 2002. Perspectives on polydnavirus origins and evolution. Adv. Virus Res., 58:203-254.

[49] Untalan, P.M., Guerrero, F.D., Haines, L.R., Pearson, T.W., 2005. Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus. Insect Biochem. Mol. Biol., 35(2):141-151.

[50] Vass, E., Nappi, A.J., 2000. Developmental and immunological aspects of Drosophila-parasitoid relationships. J. Parasitol., 86(6):1259-1270.

[51] Wang, X.Q., Yu, S.P., 2005. Novel regulation of Na+, K+-ATPase by Src tyrosine kinases in cortical neurons. J. Neurochem., 93(6):1515-1523.

[52] Wertheim, B., Kraaijeveld, A.R., Schuster, E., Blanc, E., Hopkins, M., Pletcher, S.D., Strand, M.R., Partridge, L., Godfray, H.C., 2005. Genome-wide gene expression in response to parasitoid attack in Drosophila. Genome Biol., 6(11):R94.

[53] Yeoh, S., Pope, B., Mannherz, H.G., Weeds, A., 2002. Determining the differences in actin binding by human ADF and cofilin. J. Mol. Biol., 315(4):911-925.

[54] Zhang, Z., 2005. Biochemical Characters and Physiological Functions of Venoms from Two Peromalid Wasps, Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae). PhD Thesis, Zhejiang University.

[55] Zhang, Z., Ye, G.Y., Cai, J., Hu, C., 2005. Comparative venom toxicity between Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae) toward the hemocytes of their natural hosts, non-target insects and cultured insect cells. Toxicon, 46(3):337-349.

[56] Zhu, J.Y., Ye, G.Y., Hu, C., 2008a. Molecular cloning and characterization of acid phosphatase in venom of the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Toxicon, 51(8):1391-1399.

[57] Zhu, J.Y., Ye, G.Y., Hu, C., 2008b. Morphology and ultrastructure of the venom apparatus in the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Micron, 39(7):926-933.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE