Full Text:   <2034>

CLC number: Q965.9

On-line Access: 2010-06-02

Received: 2009-12-07

Revision Accepted: 2010-03-11

Crosschecked: 2010-05-04

Cited: 4

Clicked: 4595

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2010 Vol.11 No.6 P.451-457

http://doi.org/10.1631/jzus.B0900393


Mechanism of action of two insect toxins huwentoxin-III and hainantoxin-VI on voltage-gated sodium channels


Author(s):  Rui-lan Wang, Su Yi, Song-ping Liang

Affiliation(s):  Department of Food Science, Guangdong Food and Drug Vocational College, Guangzhou 510520, China, School of Life Science, Hunan Science and Technology University, Xiangtan 411201, China, Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Science, Hunan Normal University, Changsha 410081, China

Corresponding email(s):   lucyw11@yahoo.com.cn, liangsp@hunnu.edu.cn

Key Words:  Insect neurotoxin, Dorsal unpaired median neurons, Sodium channel, Whole-cell patch clamp technique


Rui-lan Wang, Su Yi, Song-ping Liang. Mechanism of action of two insect toxins huwentoxin-III and hainantoxin-VI on voltage-gated sodium channels[J]. Journal of Zhejiang University Science B, 2010, 11(6): 451-457.

@article{title="Mechanism of action of two insect toxins huwentoxin-III and hainantoxin-VI on voltage-gated sodium channels",
author="Rui-lan Wang, Su Yi, Song-ping Liang",
journal="Journal of Zhejiang University Science B",
volume="11",
number="6",
pages="451-457",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0900393"
}

%0 Journal Article
%T Mechanism of action of two insect toxins huwentoxin-III and hainantoxin-VI on voltage-gated sodium channels
%A Rui-lan Wang
%A Su Yi
%A Song-ping Liang
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 6
%P 451-457
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0900393

TY - JOUR
T1 - Mechanism of action of two insect toxins huwentoxin-III and hainantoxin-VI on voltage-gated sodium channels
A1 - Rui-lan Wang
A1 - Su Yi
A1 - Song-ping Liang
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 6
SP - 451
EP - 457
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0900393


Abstract: 
Selenocosmia huwena and Selenocosmia hainana are two tarantula species found in southern China. Their venoms contain abundant peptide toxins. Two new neurotoxic peptides, huwentoxin-III (HWTX-III) and hainantoxin-VI (HNTX-VI), were obtained from the venom using ion-exchange chromatography and reverse-phase high performance liquid chromatography (RP-HPLC). The mechanism of action of HWTX-III and HNTX-VI on insect neuronal voltage-gated sodium channels (VGSCs) was studied via whole-cell patch clamp techniques. In a fashion similar to δ-atracotoxins, HNTX-VI can induce a slowdown of current inactivation of the VGSC and reduction in the peak of Na+ current in cockroach dorsal unpaired median (DUM) neurons. Meanwhile, 10 µmol/L HNTX-IV caused a positive shift of steady-state inactivation of sodium channel. HWTX-III inhibited VGSCs on DUM neurons (concentration of toxin at half-maximal inhibition (IC50)≈1.106 µmol/L) in a way much similar to tetrodotoxin (TTX). HWTX-III had no effect on the kinetics of activation and inactivation. The shift in the steady-state inactivation curve was distinct from other depressant spider toxins. The diverse effect and the mechanism of action of the two insect toxins illustrate the diverse biological activities of spider toxins and provide a fresh theoretical foundation to design and develop novel insecticides.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alami, M., Vacher, H., Bosmans, F., Devaux, C., Rosso, J.P., Bougis, P.E., Tytgatt, J., Darbon, H., Martin-Eauclaire, M.F., 2003. Characterization of Amm VIII from Androctonus mauretanicus mauretanicus: a new scorpion toxin that discriminates between neuronal and skeletal sodium channels. Biochemical Journal, 375(3):551-560.

[2]Catterall, W.A., 2000. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron, 26(1):13-25.

[3]de Lima, M.E., Stankiewicz, M., Hamon, A., Figueiredo, S.G., Cordeiro, M.N., Diniz, C.R., Martin-Eauclaire, M.F., Pelhate, M., 2002. The toxin Tx4 (6-1) from the spider Phoneutria nigriventer slows down Na+ current inactivation in insect CNS via binding to receptor site 3. Journal of Insect Physiology, 48(1):53-61.

[4]Goldin, A.L., Barchi, R.L., Caldwell, J.H., Hofmann, F., Howe, J.R., Hunter, J.C., Kallen, R.G., Mandel, G., Meisler, M.H., Netter, Y.B., et al., 2000. Nomenclature of voltage-gated sodium channels. Neuron, 28(2):365-368.

[5]Grolleau, F., Stankiewicz, M., Birinyi-Strachan, L.C., Wang, X.H., Nicholson, G.M., Pelhate, M., Lapied, B., 2001. Electrophysiological analysis of the neurotoxic action of a funnel-web spider toxin, δ-atracotoxin-HV1a on insect voltage-gated Na+ channels. The Journal of Experimental Biology, 204(4):711-721.

[6]Haigeny, M.C., Lakatta, E.G., Stern, M.D., Silverman, H.S., 1994. Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation, 90(1):391-399.

[7]Huang, R.H., Liu, Z.H., Liang, S.P., 2003. Purification and characterization of a neurotoxic peptide huwentoxin-III and a natural inactive mutant from the venom of the spider Selenocosmia huwena Wang (Ornithoctonus huwena Wang). Acta Biochimica et Biophysica Sinica, 35(11):976-980.

[8]Li, D., Xiao, Y., Hu, W., Xie, J., Bosmans, F., Tytgat, J., Liang, S., 2003. Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana. FEBS Letters, 555(3):616-622.

[9]Li, D.L., Xiao, Y.C., Xu, X., Xiong, X., Lu, S.Y., Liu, Z.H., Zhu, Q., Wang, M.C., Gu, X.C., Liang, S.P., 2004. Structure-activity relationships of hainantoxin-IV and structure determination of active and inactive sodium channel blockers. Journal of Biological Chemistry, 279(36):37734-37740.

[10]Meng, Z.Q., Nie, A.F., 2005. Enhancement of sodium metabisulfite on sodium currents in acutely isolated rat hippocampal CA1 neurons. Environmental Toxicology and Pharmacology, 20(1):35-41.

[11]Nicholson, G.M., 2007. Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon, 49(4):490-512.

[12]Nicholson, G.M., Walsh, R., Little, M.J., Tyler, M.I., 1998. Characterisation of the effects of robustoxin, the lethal neurotoxin from the Sydney funnel-web spider Atrax robustus, on sodium channel activation and inactivation. Pflügers Archiv-European Journal of Physiology, 436(1):117-126.

[13]Pan, J.Y., Hu, W.J., Liang, S.P., 2002. Purification, sequencing and characterization of hainantoxin-VI, a neurotoxin from the Chinese bird spider Selenocosmia hainana. Zoological Research, 23(4):280-283 (in Chinese).

[14]Richard Benzinger, G., Tonkovich, G.S., Hanck, D.A., 1999. Augmentation of recovery from inactivation by site-3 Na channel toxins. A single-channel and whole-cell study of sustained currents. The Journal of General Physiology, 113(2):333-346.

[15]Rogers, J.C., Qu, Y., Tanada, T.N., Scheuer, T., Catterall, W.A., 1996. Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na+ channel alpha subunit. Journal of Biological Chemistry, 271(27):15950-15962.

[16]Shon, K.J., Olivera, B.M., Watkins, M., Jacobsen, R.B., Gray, W.R., Floresca, C.Z., Cruz, L.J., Hillyard, D.R., Brink, A., Terlau, H., et al., 1998. μ-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes. The Journal of Neuroscience, 18(12):4473-4481.

[17]Shu, Q., Liang, S.P., 1999. Purification and characterization of huwentoxin-II, a neurotoxic peptide from the venom of the Chinese bird spider Selenocosmia huwena. Journal of Peptide Research, 53(5):486-491.

[18]Szeto, T.H., Birinyi-Strachan, L.C., Smith, R.W., Connor, M., Christie, M.J., King, G., Nicholson, G.M., 2000. Isolation and pharmacological characterisation of δ-atracotoxin-Hv1b, a vertebrate-selective sodium channel toxin. FEBS Letters, 470(3):293-299.

[19]Taylor, C.P., Meldrum, B., 1995. Na+ channels as targets for neuroprotective drugs. Trends in Pharmacological Sciences, 16(9):309-316.

[20]Wang, M.C., Guan, X., Liang, S.P., 2007. The cross channel activities of spider neurotoxin huwentoxin-I on rat dorsal root ganglion neurons. Biochemical and Biophysical Research Communications, 357(3):579-583.

[21]Warmke, J.W., Reenan, R.A., Wang, P., Qian, S., Arena, J.P., Wang, J., Wunderler, D., Liu, K., Kaczorowski, G.J., van der Ploeg, L.H., et al., 1997. Functional expression of Drosophila para sodium channels. Modulation by the membrane protein TipE and toxin pharmacology. The Journal of General Physiology, 110(2):119-133.

[22]Xiao, Y.C., Liang, S.P., 2003a. Purification and characterization of hainantoxin-V, a tetrodotoxin-sensitive sodium channel inhibitor from the venom of the spider Selenocosmia hainana. Toxicon, 41(6):643-650.

[23]Xiao, Y.C., Liang, S.P., 2003b. Inhibition of neuronal tetrodotoxin-sensitive Na+ channels by two spider toxins: hainantoxin-III and hainantoxin-IV. European Journal of Pharmacology, 477(1):1-7.

[24]Yu, F.H., Westenbroek, R.E., Silos-Santiago, I., McCormick, K.A., Lawson, D., Ge, P., Ferriera, H., Lilly, J., DiStefano, P.S., Catterall, W.A., et al., 2003. Sodium channel β4, a new disulfide-linked auxiliary subunit with similarity to β2. The Journal of Neuroscience, 23(20):7577-7585.

[25]Zlotkin, E., 1999. The insect voltage-gated sodium channel as target of insecticides. Annual Review of Entomology, 44(1):429-455.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE