Full Text:   <2847>

CLC number: Q73

On-line Access: 2010-12-09

Received: 2010-04-06

Revision Accepted: 2010-11-15

Crosschecked: 2010-11-18

Cited: 14

Clicked: 6225

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2010 Vol.11 No.12 P.923-930


Colorectal cancer cell growth inhibition by linoleic acid is related to fatty acid composition changes

Author(s):  Xiao-feng Lu, Guo-qing He, Hai-ning Yu, Qi Ma, Sheng-rong Shen, Undurti N. Das

Affiliation(s):  Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032, China, UND Life Sciences, Shaker Heights, OH 44120, USA, College of Medicine, Bharati Vidyapeeth University, Pune 411030, India

Corresponding email(s):   shrshen@zju.edu.cn

Key Words:  Anti-cancer, Fatty acids composition, Linoleic acid, In vitro

Xiao-feng Lu, Guo-qing He, Hai-ning Yu, Qi Ma, Sheng-rong Shen, Undurti N. Das. Colorectal cancer cell growth inhibition by linoleic acid is related to fatty acid composition changes[J]. Journal of Zhejiang University Science B, 2010, 11(12): 923-930.

@article{title="Colorectal cancer cell growth inhibition by linoleic acid is related to fatty acid composition changes",
author="Xiao-feng Lu, Guo-qing He, Hai-ning Yu, Qi Ma, Sheng-rong Shen, Undurti N. Das",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Colorectal cancer cell growth inhibition by linoleic acid is related to fatty acid composition changes
%A Xiao-feng Lu
%A Guo-qing He
%A Hai-ning Yu
%A Qi Ma
%A Sheng-rong Shen
%A Undurti N. Das
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 12
%P 923-930
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000125

T1 - Colorectal cancer cell growth inhibition by linoleic acid is related to fatty acid composition changes
A1 - Xiao-feng Lu
A1 - Guo-qing He
A1 - Hai-ning Yu
A1 - Qi Ma
A1 - Sheng-rong Shen
A1 - Undurti N. Das
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 12
SP - 923
EP - 930
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000125

Polyunsaturated fatty acids (PUFAs) possess anti-cancer action both in vitro and in vivo. In the present study, we detected cell viability with methyl thiazolyl tetrazolium (MTT) assay and cell membrane permeability with propidium iodide (PI) fluorescence dyeing, and calculated cell membrane fluidity change as fluorescence anisotropy. Fatty acid content in cells was measured by gas chromatography/mass spectroscopy (GC/MS), and the relationship between fatty acid composition and cell viability was studied. We observed that n-6 PUFA linoleic acid (LA) inhibited tumor cell growth at high concentrations (≥300 µmol/L), while low concentrations (100–200 µmol/L) seemed to promote cell proliferation. Analyses of cell membrane permeability, cell membrane fluidity, and cell fatty acid composition suggested that the anti-cancer action of LA could be related to changes in the ratio of n-6 to n-3 PUFAs. We observed that pre-incubation of cancer cells with 100 µmol/L LA for 24 h enhanced cell sensitivity to the cytotoxic action of LA, whereas undifferentiated cell line LoVo seemed to have a distinct path in LA-induced death. These results showed that one of the mechanisms by which supplementation of LA induces cancer cell death could be altering the ratio of n-6/n-3 PUFAs, and this may be related to cell differentiation status.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abumrad, N., Harmon, C., Ibrahimi, A., 1998. Membrane transport of long-chain fatty acids: evidence for a facilitated process. J. Lipid Res., 39(12):2309-2318.

[2]Bégin, M.E., Das, U.N., Ells, G., Horrobin, D.F., 1985. Selective killing of human cancer cells by polyunsaturated fatty acids. Prostaglandins Leukot. Med., 19(2):177-186.

[3]Bégin, M.E., Das, U.N., Ells, G., 1986a. Cytotoxic effects of essential fatty acids (EFA) in mixed cultures of normal and malignant human cells. Progr. Lipid Res., 25(1):573-576.

[4]Bégin, M.E., Ells, G., Das, U.N., Horrobin, D.F., 1986b. Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J. Natl. Cancer Inst., 77(5):1053-1062.

[5]Berquin, I.M., Min, Y., Wu, R., Wu, J., Perry, D., Cline, J.M., Thomas, M.J., Thornburg, T., Kulik, G., Smith, A., et al., 2007. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J. Clin. Invest., 117(7):1866-1875.

[6]Chapkin, R.S., Seo, J., McMurray, D.N., Lupton, J.R., 2008. Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chem. Phys. Lipids, 153(1):14-23. 

[7]Conquer, J.A., Martin, J.B., Tummon, I., Watson, L., Tekpetey, F., 1999. Fatty acid analysis of blood serum, seminal plasma, and spermatozoa of normozoospermic vs. asthenozoospermic males. Lipids, 34(8):793-799.

[8]Das, U.N., 1991. Tumoricidal action of cis-unsaturated fatty acids and its relationship to free radicals and lipid peroxidation. Cancer Lett., 56(3):235-243.

[9]Das, U.N., 2006a. Essential fatty acids—a review. Curr. Pharm. Biotechnol., 7(6):467-482.

[10]Das, U.N., 2006b. Essential fatty acids: biochemistry, physiology, and pathology. Biotechnol. J., 1(4):420-439.

[11]Das, U.N., Swamy, S.M.K., Tan, B.K.H., 2002. Effect of essential fatty acids and their metabolites on human lymphocytic leukemia and human colon adenocarcinoma lymph node cells in vitro. Nutrition, 18(4):348-350.

[12]Funahashi, H., Satake, M., Hasan, S., Sawai, H., Newman, R.A., Reber, H.A., Hines, O.J., Eibl, G., 2008. Opposing effects of n-6 and n-3 polyunsaturated fatty acids on pancreatic cancer growth. Pancreas, 36(4):353-362.

[13]Guo, W., Huang, N.S., Cai, J., Xie, W.S., Hamilton, J.A., 2006. Fatty acid transport and metabolism in HepG2 cells. Am. J. Physiol. Gastrointest. Liver Physiol., 290(3):G528-G534.

[14]Hammamieh, R., Chakraborty, N., Miller, S.A., Waddy, E., Barmada, M., Das, R., Peel, S.A., Day, A.A., Jett, M., 2007. Differential effects of omega-3 and omega-6 fatty acids on gene expression in breast cancer cells. Breast Cancer Res. Treat., 101(1):7-16.

[15]Ip, C., 1993. Controversial issues of dietary fat and experimental mammary carcinogenesis. Prev. Med., 22(5):728-737.

[16]Kelavkar, U.P., Hutzley, J., Dhir, R., Kim, P., Allen, K.G.D., Mchugh, K., 2006a. Prostate tumor growth and recurrence can be modulated by the ω-6:ω-3 ratio in diet: athymic mouse xenograft model simulating radical prostatectomy. Neoplasia, 8(2):112-124.

[17]Kelavkar, U., Lin, Y., Landsittel, D., Chandran, U., Dhir, R., 2006b. The yin and yang of 15-lipoxygenase-1 and delta-desaturases: dietary omega-6 LA metabolic pathway in prostate. J. Carcinog., 5(1):9.

[18]Klurfeld, D.M., Bull, A.W., 1997. Fatty acids and colon cancer in experimental models. Am. J. Clin. Nutr., 66(6):1530S-1538S.

[19]Kumar, S.G., Das, U.N., 1997. Cytotoxic action of alpha-linolenic and eicosapentaenoic acids on myeloma cells in vitro. Prostaglandins Leukot. Essent. Fatty Acids, 56(4):285-293.

[20]Labieniec, M., Przygodzki, T., Čársky, J., Malinska, D., Rysz, J., Watala, C., 2009. Effects of resorcylidene aminoguanidine (RAG) on selected parameters of isolated rat liver mitochondria. Chem. Biol. Interact., 179(2-3):280-287.

[21]Lagerstedt, S.A., Hinrichs, D.R., Batt, S.M., Magera, M.J., Rinaldo, P., McConnell, J.P., 2001. Quantitative determination of plasma C8–C26 total fatty acids for the biochemical diagnosis of nutritional and metabolic disorders. Mol. Genet. Metab., 73(1):38-45.

[22]Larsson, S.C., Kumlin, M., Ingelman-Sundberg, M., Wolk, A., 2004. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am. J. Clin. Nutr., 79(6):935-945.

[23]Rasmussen, N., Andersen, J.H., Jespersen, H., Mouritsen, O.G., Ditzel, H.J., 2010. Effect of free fatty acids and lysolipids on cellular uptake of doxorubicin in human breast cancer cell lines. Anti-cancer Drugs, 21(7):674-677.

[24]Shen, S.R., Yu, H.N., Chen, P., Yin, J.J., Xiong, Y.K., 2007. Fatty acids in tea shoots (Camellia sinensis (L.) O. Kuntze) and their effects on the growth of retinal RF/6A endothelial cell lines. Mol. Nutr. Food Res., 51(2):221-228.

[25]Zhen, Y.Z., Lin, Y.J., Li, Y., Zhen, Y.S., 2009. Lidamycin shows highly potent cytotoxic to myeloma cells and inhibits tumor growth in mice. Acta Pharm. Sin., 30(7):1025-1032.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE