CLC number: R979.1
On-line Access: 2011-07-04
Received: 2010-06-09
Revision Accepted: 2010-12-03
Crosschecked: 2011-05-31
Cited: 16
Clicked: 6768
Qin Zhao, Zhi-dong Liu, Yong Xue, Jing-feng Wang, Hui Li, Qing-juan Tang, Yu-ming Wang, Ping Dong, Chang-hu Xue. Ds-echinoside A, a new triterpene glycoside derived from sea cucumber, exhibits antimetastatic activity via the inhibition of NF-κB-dependent MMP-9 and VEGF expressions[J]. Journal of Zhejiang University Science B, 2011, 12(7): 534-544.
@article{title="Ds-echinoside A, a new triterpene glycoside derived from sea cucumber, exhibits antimetastatic activity via the inhibition of NF-κB-dependent MMP-9 and VEGF expressions",
author="Qin Zhao, Zhi-dong Liu, Yong Xue, Jing-feng Wang, Hui Li, Qing-juan Tang, Yu-ming Wang, Ping Dong, Chang-hu Xue",
journal="Journal of Zhejiang University Science B",
volume="12",
number="7",
pages="534-544",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000217"
}
%0 Journal Article
%T Ds-echinoside A, a new triterpene glycoside derived from sea cucumber, exhibits antimetastatic activity via the inhibition of NF-κB-dependent MMP-9 and VEGF expressions
%A Qin Zhao
%A Zhi-dong Liu
%A Yong Xue
%A Jing-feng Wang
%A Hui Li
%A Qing-juan Tang
%A Yu-ming Wang
%A Ping Dong
%A Chang-hu Xue
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 7
%P 534-544
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000217
TY - JOUR
T1 - Ds-echinoside A, a new triterpene glycoside derived from sea cucumber, exhibits antimetastatic activity via the inhibition of NF-κB-dependent MMP-9 and VEGF expressions
A1 - Qin Zhao
A1 - Zhi-dong Liu
A1 - Yong Xue
A1 - Jing-feng Wang
A1 - Hui Li
A1 - Qing-juan Tang
A1 - Yu-ming Wang
A1 - Ping Dong
A1 - Chang-hu Xue
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 7
SP - 534
EP - 544
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000217
Abstract: ds-echinoside A (DSEA), a non-sulfated triterpene glycoside, was isolated from the sea cucumber Pearsonothuria graeffei. In vitro and in vivo investigations were conducted on the effects of DSEA on tumor cell adhesion, migration, invasion, and angiogenesis. In this study, we found that DSEA inhibited the proliferation of human hepatocellular liver carcinoma cells Hep G2, with a half-maximal inhibitory concentration (IC50) of 2.65 μmol/L, and suppressed Hep G2 cell adhesion, migration, and invasion in a dose-dependent manner. DSEA also reduced tube formation of human endothelial cells ECV-304 on matrigel in vitro and attenuated neovascularization in the chick embryo chorioallantoic membrane (CAM) assay in vivo. Immunocytochemical analysis revealed that DSEA significantly decreased the expression of matrix metalloproteinase-9 (MMP-9), which plays an important role in the degradation of basement membrane in tumor metastasis and angiogenesis. DSEA also increased the protein expression level of tissue inhibitor of metalloproteinase-1 (TIMP-1), an important regulator of MMP-9 activation. From the results of Western blotting, the expressions of nuclear factor-kappa b (NF-κ;b) and vascular endothelial growth factor (VEGF) were found to be remarkably reduced by DSEA. These findings suggest that DSEA exhibits a significant anti-metastatic activity through the specific inhibition of NF-κB-dependent MMP-9 and VEGF expressions.
[1]Alaniz, L., García, M., Cabrera, P., Arnaiz, M., Cavaliere, V., Blanco, G., Alvarez, E., Hajos, S., 2004. Modulation of matrix metalloproteinase-9 activity by hyaluronan is dependent on NF-κB activity in lymphoma cell lines with dissimilar invasive behavior. Biochem. Biophys. Res. Commun., 324(2):736-743.
[2]Alferez, D., Wilkinson, R., Watkins, J., Poulsom, R., Mandir, N., Wedge, S., Pyrah, I., Smith, N., Jackson, L., Ryan, A., 2008. Dual inhibition of VEGFR and EGFR signaling reduces the incidence and size of intestinal adenomas in ApcMin/+ mice. Mol. Cancer Ther., 7(3):590-598.
[3]Chambers, A., Groom, A., MacDonald, I., 2002. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer, 2(8):563-572.
[4]Chan, V., Chan, M., Leung, W., Leung, P., Sung, J., Chan, F., 2005. Intestinal trefoil factor promotes invasion in non-tumorigenic Rat-2 fibroblast cell. Regul. Pept., 127(1-3):87-94.
[5]Chang, C., Werb, Z., 2001. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol., 11(11):S37-S43.
[6]Chludil, H.D., Muniain, C.C., Seldes, A.M., Maier, M.S., 2002. Cytotoxic and antifungal triterpene glycosides from the Patagonian sea cucumber Hemoiedema spectabilis. J. Nat. Prod., 65(6):860-865.
[7]Choi, J.H., Han, E.H., Hwang, Y.P., Choi, J.M., Choi, C.Y., Chung, Y.C., Seo, J.K., Jeong, H.G., 2010. Suppression of PMA-induced tumor cell invasion and metastasis by aqueous extract isolated from Prunella vulgaris via the inhibition of NF-κB-dependent MMP-9 expression. Food Chem. Toxicol., 48(2):564-571.
[8]Dai, L., Gu, L., Ding, C., Qiu, L., Di, W., 2009. TWEAK promotes ovarian cancer cell metastasis via NF-κB pathway activation and VEGF expression. Cancer Lett., 283(2):159-167.
[9]Dong, P., Xue, C., Yu, L., Xu, J., Chen, S., 2008. Determination of triterpene glycosides in sea cucumber (Stichopus japonicus) and its related products by high-performance liquid chromatography. J. Agric. Food Chem., 56(13):4937-4942.
[10]Farina, A., Tacconelli, A., Vacca, A., Maroder, M., Gulino, A., Mackay, A., 1999. Transcriptional up-regulation of matrix metalloproteinase-9 expression during spontaneous epithelial to neuroblast phenotype conversion by SK-N-SH neuroblastoma cells, involved in enhanced invasivity, depends upon GT-box and nuclear factor κB elements. Cell Growth Differ., 10(5):353-367.
[11]Folkman, J., 2006. Angiogenesis. Annu. Rev. Med., 57(1):1-18.
[12]Forsythe, J., Jiang, B., Iyer, N., Agani, F., Leung, S., Koos, R., Semenza, G., 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell Biol., 16(9):4604-4613.
[13]Hornebeck, W., Lambert, E., Petitfrère, E., Bernard, P., 2005. Beneficial and detrimental influences of tissue inhibitor of metalloproteinase-1 (TIMP-1) in tumor progression. Biochimie, 87(3-4):377-383.
[14]Imanaka, H., Koide, H., Shimizu, K., Asai, T., Kinouchi Shimizu, N., Ishikado, A., Makino, T., Oku, N., 2008. Chemoprevention of tumor metastasis by liposomal β-sitosterol intake. Biol. Pharm. Bull., 31(3):400-404.
[15]Jiang, Y., Goldberg, I., Shi, Y., 2002. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene, 21(14):2245-2252.
[16]Jin, J.O., Shastina, V.V., Shin, S.W., Xu, Q., Park, J.I., Rasskazov, V.A., Avilov, S.A., Fedorov, S.N., Stonik, V.A., Kwak, J.Y., 2009. Differential effects of triterpene glycosides, frondoside A and cucumarioside A2-2 isolated from sea cucumbers on caspase activation and apoptosis of human leukemia cells. FEBS Lett., 583(4):697-702.
[17]Kaomongkolgit, R., Cheepsunthorn, P., Pavasant, P., Sanchavanakit, N., 2008. Iron increases MMP-9 expression through activation of AP-1 via ERK/Akt pathway in human head and neck squamous carcinoma cells. Oral Oncol., 44(6):587-594.
[18]Kiriakidis, S., Andreakos, E., Monaco, C., Foxwell, B., Feldmann, M., Paleolog, E., 2003. VEGF expression in human macrophages is NF-κB-dependent: studies using adenoviruses expressing the endogenous NF-κB inhibitor IκBα and a kinase-defective form of the IκB kinase 2. J. Cell Sci., 116(4):665-674.
[19]Kitagawa, I., Inamoto, T., Fuchida, M., Okada, S., Kobayashi, M., Nishino, T., Kyogoku, Y., 1980. Structures of Echinoside A and B, two antifungal oligoglycosides from the sea cucumber Actinopyga echinites (Jaeger). Chem. Pharm. Bull., 28(5):1651-1653.
[20]Kleiner, D., Stetler-Stevenson, W., 1999. Matrix metalloproteinases and metastasis. Cancer Chemoth. Pharm., 43(7):S42-S51.
[21]Ko, H., Jung, H., Seo, K., Kang, Y., Kim, H., Park, S., Lee, H., Im, S., 2006. Platelet-activating factor-induced NF-κB activation enhances VEGF expression through a decrease in p53 activity. FEBS Lett., 580(13):3006-3012.
[22]La Porta, C., Comolli, R., 1998. PKC-dependent modulation of IκBα-NF-κB pathway in low metastatic B16F1 murine melanoma cells and in highly metastatic BL6 cells. Anticancer Res., 18(4A):2591-2597.
[23]Lee, K., Hwang, S., Choi, J., Jeong, H., 2008. Saponins derived from the roots of Platycodon grandiflorum inhibit HT-1080 cell invasion and MMPs activities: regulation of NF-κB activation via ROS signal pathway. Cancer Lett., 268(2):233-243.
[24]Leung, D., Cachianes, G., Kuang, W., Goeddel, D., Ferrara, N., 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 246(4935):1306-1309.
[25]Liaw, L., Almeida, M., Hart, C., Schwartz, S., Giachelli, C., 1994. Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circ. Res., 74(2):214-224.
[26]Liotta, L., Steeg, P., Stetler-Stevenson, W., 1991. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell, 64(2):327-336.
[27]Liu, B., Yi, Y., Li, L., Zhang, S., Han, H., Weng, Y., Pan, M., 2007. Arguside A: a new cytotoxic triterpene glycoside from the sea cucumber Bohadschia argus Jaeger. Chem. Biodivers., 4(12):2845-2851.
[28]Machesky, L., 2008. Lamellipodia and filopodia in metastasis and invasion. FEBS Lett., 582(14):2102-2111.
[29]McCawley, L., Matrisian, L., 2000. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol. Med. Today, 6(4):149-156.
[30]Nabeshima, K., Inoue, T., Shimao, Y., Sameshima, T., 2002. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol. Int., 52(4):255-264.
[31]Nagao, N., Etoh, T., Yamaoka, S., Okamoto, T., Miwa, N., 2000. Enhanced invasion of Tax-expressing fibroblasts into the basement membrane is repressed by phosphorylated ascorbate with simultaneous decreases in intracellular oxidative stress and NF-κB activation. Antioxid. Redox Sign., 2(4):727-738.
[32]Pahl, H., 1999. Activators and target genes of Rel/NF-κB transcription factors. Oncogene, 18(49):6853-6866.
[33]Pasco, S., Brassart, B., Ramont, L., Maquart, F., Monboisse, J., 2005. Control of melanoma cell invasion by type IV collagen. Cancer Detect. Prev., 29(3):260-266.
[34]Rao, J., 2003. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat. Rev. Cancer, 3(7):489-501.
[35]Sanceau, J., Truchet, S., Bauvois, B., 2003. Matrix metalloproteinase-9 silencing by RNA interference triggers the migratory-adhesive switch in Ewing’s sarcoma cells. J. Biol. Chem., 278(38):36537-36546.
[36]Shibata, A., Nagaya, T., Imai, T., Funahashi, H., Nakao, A., Seo, H., 2002. Inhibition of NF-κB activity decreases the VEGF mRNA expression in MDA-MB-231 breast cancer cells. Breast Cancer Res. Tr., 73(3):237-243.
[37]Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Bokesch, H., Kenney, S., Boyd, M.R., 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 82(13):1107-1112.
[38]Steeg, P., 2006. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med., 12(8):895-904.
[39]Tan, D., Kini, R., Jois, S., Lim, D., Xin, L., Ge, R., 2001. A small peptide derived from Flt-1 (VEGFR-1) functions as an angiogenic inhibitor. FEBS Lett., 494(3):150-156.
[40]Tian, F., Zhang, X., Tong, Y., Yi, Y., Zhang, S., Li, L., Sun, P., Lin, L., Ding, J., 2005. PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol. Ther., 4(8):874-882.
[41]Tong, Y., Zhang, X., Tian, F., Yi, Y., Xu, Q., Li, L., Tong, L., Lin, L., Ding, J., 2005. Philinopside A, a novel marine-derived compound possessing dual anti-angiogenic and anti-tumor effects. Int. J. Cancer, 114(6):843-853.
[42]Wang, S., Liu, H., Ren, L., Pan, Y., Zhang, Y., 2008. Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference. Neoplasia, 10(4):399-409.
[43]Watanabe, H., Nakanishi, I., Yamashita, K., Hayakawa, T., Okada, Y., 1993. Matrix metalloproteinase-9 (92 kDa gelatinase/type IV collagenase) from U937 monoblastoid cells: correlation with cellular invasion. J. Cell Sci., 104(4):991-999.
[44]Westermarck, J., Kähäri, V., 1999. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J., 13(8):781-792.
[45]Yu, Y., Li, Q., Zhu, Z., 2005. NF-κB as a molecular target in adjuvant therapy of gastrointestinal carcinomas. Eur. J. Surg. Oncol., 31(4):386-392.
[46]Zhang, S., Li, L., Lin, J., Lin, H., 2003. Imbalance between expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in invasiveness and metastasis of human gastric carcinoma. World J. Gastroenterol., 9(5):899-904.
[47]Zhang, S., Tang, H., Yi, Y., 2007. Cytotoxic triterpene glycosides from the sea cucumber Pseudocolochirus violaceus. Fitoterapia, 78(4):283-287.
Open peer comments: Debate/Discuss/Question/Opinion
<1>