Full Text:   <1872>

Summary:  <1333>

CLC number: Q344+.13

On-line Access: 2014-05-05

Received: 2014-03-26

Revision Accepted: 2014-04-11

Crosschecked: 2014-04-14

Cited: 1

Clicked: 4367

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.5 P.444-454


mRNA stability in the nucleus*

Author(s):  Han Liu1, Min Luo2, Ji-kai Wen3

Affiliation(s):  1. Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China; more

Corresponding email(s):   jkwen@scau.edu.cn

Key Words:  mRNA stability, Nuclear mRNA retention, Quality control, mRNA degradation

Han Liu, Min Luo, Ji-kai Wen. mRNA stability in the nucleus[J]. Journal of Zhejiang University Science B, 2014, 15(5): 444-454.

@article{title="mRNA stability in the nucleus",
author="Han Liu, Min Luo, Ji-kai Wen",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T mRNA stability in the nucleus
%A Han Liu
%A Min Luo
%A Ji-kai Wen
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 5
%P 444-454
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400088

T1 - mRNA stability in the nucleus
A1 - Han Liu
A1 - Min Luo
A1 - Ji-kai Wen
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 5
SP - 444
EP - 454
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400088

Eukaryotic gene expression is controlled by different levels of biological events, such as transcription factors regulating the timing and strength of transcripts production, alteration of transcription rate by RNA processing, and mRNA stability during RNA processing and translation. RNAs, especially mRNAs, are relatively vulnerable molecules in living cells for ribonucleases (RNases). The maintenance of quality and quantity of transcripts is a key issue for many biological processes. Extensive studies draw the conclusion that the stability of RNAs is dedicated-regulated, occurring co- and post-transcriptionally, and translation-coupled as well, either in the nucleus or cytoplasm. Recently, RNA stability in the nucleus has aroused much research interest, especially the stability of newly-made transcripts. In this article, we summarize recent progresses on mRNA stability in the nucleus, especially focusing on quality control of newly-made RNA by RNA polymerase II in eukaryotes.



Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project, 2009. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature, 457(7232):1028-1032. 

[2] Amberg, D.C., Goldstein, A.L., Cole, C.N., 1992. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev, 6(7):1173-1189. 

[3] Arigo, J.T., Eyler, D.E., Carroll, K.L., 2006. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell, 23(6):841-851. 

[4] Babitzke, P., Kushner, S.R., 1991. The Ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of Escherichia coliPNAS, 88(1):1-5. 

[5] Bousquet-Antonelli, C., Presutti, C., Tollervey, D., 2000. Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell, 102(6):765-775. 

[6] Brannan, K., Kim, H., Erickson, B., 2012. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol Cell, 46(3):311-324. 

[7] Brogna, S., Wen, J., 2009. Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol, 16(2):107-113. 

[8] Burkard, K.T., Butler, J.S., 2000. A nuclear 3′-5′ exonuclease involved in mRNA degradation interacts with poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol, 20(2):604-616. 

[9] Canavan, R., Bond, U., 2007. Deletion of the nuclear exosome component RRP6 leads to continued accumulation of the histone mRNA HTB1 in S-phase of the cell cycle in Saccharomyces cerevisiaeNucl Acids Res, 35(18):6268-6279. 

[10] Chekulaeva, M., Filipowicz, W., 2009. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol, 21(3):452-460. 

[11] Chen, C.Y., Gherzi, R., Ong, S.E., 2001. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell, 107(4):451-464. 

[12] Core, L.J., Waterfall, J.J., Lis, J.T., 2008. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science, 322(5909):1845-1848. 

[13] Das, B., Guo, Z., Russo, P., 2000. The role of nuclear cap binding protein Cbc1p of yeast in mRNA termination and degradation. Mol Cell Biol, 20(8):2827-2838. 

[14] Das, B., Butler, J.S., Sherman, F., 2003. Degradation of normal mRNA in the nucleus of Saccharomyces cerevisiaeMol Cell Biol, 23(16):5502-5515. 

[15] Davis, C.A., Ares, M., 2006. Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiaePNAS, 103(9):3262-3267. 

[16] Davis, R., Shi, Y., 2014. The polyadenylation code: a unified model for the regulation of mRNA alternative polyadenylation. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 15(5):429-437. 

[17] Doma, M.K., Parker, R., 2006. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature, 440(7083):561-564. 

[18] Dower, K., Kuperwasser, N., Merrikh, H., 2004. A synthetic A tail rescues yeast nuclear accumulation of a ribozyme-terminated transcript. RNA, 10(12):1888-1899. 

[19] Dunn, E.F., Hammell, C.M., Hodge, C.A., 2005. Yeast poly(A)-binding protein, Pab1, and PAN, a poly(A) nuclease complex recruited by Pab1, connect mRNA biogenesis to export. Genes Dev, 19(1):90-103. 

[20] Dziembowski, A., Ventura, A.P., Rutz, B., 2004. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J, 23(24):4847-4856. 

[21] Dziembowski, A., Lorentzen, E., Conti, E., 2007. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol, 14(1):15-22. 

[22] Even, S., Pellegrini, O., Zig, L., 2005. Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional homology to E. coli RNase E. Nucl Acids Res, 33(7):2141-2152. 

[23] Galy, V., Gadal, O., Fromont-Racine, M., 2004. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell, 116(1):63-73. 

[24] Geerlings, T.H., Vos, J.C., Raue, H.A., 2000. The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5′→3′ exonucleases. RNA, 6(12):1698-1703. 

[25] Gonatopoulos-Pournatzis, T., Cowling, V.H., 2014. Cap-binding complex (CBC). Biochem J, 458(1):185

[26] Grigull, J., Mnaimneh, S., Pootoolal, J., 2004. Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Mol Cell Biol, 24(12):5534-5547. 

[27] Gudipati, R.K., Villa, T., Boulay, J., 2008. Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nat Struct Mol Biol, 15(8):786-794. 

[28] Gudipati, R.K., Xu, Z.Y., Lebreton, A., 2012. Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol Cell, 48(3):409-421. 

[29] Halbach, F., Reichelt, P., Rode, M., 2013. The yeast Ski complex: crystal structure and RNA channeling to the exosome complex. Cell, 154(4):814-826. 

[30] Henry, Y., Wood, H., Morrissey, J.P., 1994. The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J, 13(10):2452-2463. 

[31] Hilleren, P., McCarthy, T., Rosbash, M., 2001. Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature, 413(6855):538-542. 

[32] Houseley, J., LaCava, J., Tollervey, D., 2006. RNA-quality control by the exosome. Nat Rev Mol Cell Biol, 7(7):529-539. 

[33] Jackson, D.A., Pombo, A., Iborra, F., 2000. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells. FASEB J, 14(2):242-254. 

[34] Jacquier, A., 2009. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet, 10(12):833-844. 

[35] Jiao, X.F., Xiang, S., Oh, C., 2010. Identification of a quality-control mechanism for mRNA 5′-end capping. Nature, 467(7315):608-611. 

[36] Kapranov, P., Cheng, J., Dike, S., 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316(5830):1484-1488. 

[37] Kim, M., Krogan, N.J., Vasiljeva, L., 2004. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature, 432(7016):517-522. 

[38] Kim, M., Vasiljeva, L., Rando, O.J., 2006. Distinct pathways for snoRNA and mRNA termination. Mol Cell, 24(5):723-734. 

[39] Kim, Y.K., Furic, L., Desgroseillers, L., 2005. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell, 120(2):195-208. 

[40] Kuai, L., Das, B., Sherman, F., 2005. A nuclear degradation pathway controls the abundance of normal mRNAs in Saccharomyces cerevisiaePNAS, 102(39):13962-13967. 

[41] Kufel, J., Bousquet-Antonelli, C., Beggs, J.D., 2004. Nuclear pre-mRNA decapping and 5′ degradation in yeast require the Lsm2-8p complex. Mol Cell Biol, 24(21):9646-9657. 

[42] LaCava, J., Houseley, J., Saveanu, C., 2005. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell, 121(5):713-724. 

[43] Legrain, P., Rosbash, M., 1989. Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell, 57(4):573-583. 

[44] Lemieux, C., Marguerat, S., Lafontaine, J., 2011. A pre-mRNA degradation pathway that selectively targets intron-containing genes requires the nuclear poly(A)-binding protein. Mol Cell, 44(1):108-119. 

[45] Lewis, A., Felberbaum, R., Hochstrasser, M., 2007. A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance. J Cell Biol, 178(5):813-827. 

[46] Li, C.H., Irmer, H., Gudjonsdottir-Planck, D., 2006. Roles of a Trypanosoma brucei 5′→3′ exoribonuclease homolog in mRNA degradation. RNA, 12(12):2171-2186. 

[47] Libri, D., Dower, K., Boulay, J., 2002. Interactions between mRNA export commitment, 3′-end quality control, and nuclear degradation. Mol Cell Biol, 22(23):8254-8266. 

[48] Liu, Q.S., Greimann, J.C., Lima, C.D., 2006. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell, 127(6):1223-1237. 

[49] Lubas, M., Christensen, M.S., Kristiansen, M.S., 2011. Interaction profiling identifies the human nuclear exosome targeting complex. Mol Cell, 43(4):624-637. 

[50] Luke, B., Panza, A., Redon, S., 2008. The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiaeMol Cell, 32(4):465-477. 

[51] Malecki, M., Viegas, S.C., Carneiro, T., 2013. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J, 32(13):1842-1854. 

[52] Mathy, N., Benard, L., Pellegrini, O., 2007. 5′-to-3′ exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5′ stability of mRNA. Cell, 129(4):681-692. 

[53] Milligan, L., Torchet, C., Allmang, C., 2005. A nuclear surveillance pathway for mRNAs with defective polyadenylation. Mol Cell Biol, 25(22):9996-10004. 

[54] Minvielle-Sebastia, L., Winsor, B., Bonneaud, N., 1991. Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol Cell Biol, 11(6):3075-3087. 

[55] Mitchell, P., Petfalski, E., Shevchenko, A., 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell, 91(4):457-466. 

[56] Mitchell, P., Petfalski, E., Houalla, R., 2003. Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol Cell Biol, 23(19):6982-6992. 

[57] Montero Llopis, P., Jackson, A.F., Sliusarenko, O., 2010. Spatial organization of the flow of genetic information in bacteria. Nature, 466(7302):77-81. 

[58] Palancade, B., Zuccolo, M., Loeillet, S., 2005. Pml39, a novel protein of the nuclear periphery required for nuclear retention of improper messenger ribonucleoparticles. Mol Biol Cell, 16(11):5258-5268. 

[59] Peng, S.S., Chen, C.Y., Xu, N., 1998. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J, 17(12):3461-3470. 

[60] Porrua, O., Libri, D., 2013. RNA quality control in the nucleus: the Angels’ share of RNA. Biochim Biophys Acta, 1829(6-7):604-611. 

[61] Preker, P., Nielsen, J., Kammler, S., 2008. RNA exosome depletion reveals transcription upstream of active human promoters. Science, 322(5909):1851-1854. 

[62] Proudfoot, N.J., 2011. Ending the message: poly(A) signals then and now. Genes Dev, 25(17):1770-1782. 

[63] Richard, P., Manley, J.L., 2009. Transcription termination by nuclear RNA polymerases. Genes Dev, 23(11):1247-1269. 

[64] Roth, K.M., Wolf, M.K., Rossi, M., 2005. The nuclear exosome contributes to autogenous control of NAB2 mRNA levels. Mol Cell Biol, 25(5):1577-1585. 

[65] Rougemaille, M., Dieppois, G., Kisseleva-Romanova, E., 2008. THO/Sub2p functions to coordinate 3′-end processing with gene-nuclear pore association. Cell, 135(2):308-321. 

[66] Rutz, B., Seraphin, B., 2000. A dual role for BBP/ScSF1 in nuclear pre-mRNA retention and splicing. EMBO J, 19(8):1873-1886. 

[67] Schmid, M., Poulsen, M.B., Olszewski, P., 2012. Rrp6p controls mRNA poly(A) tail length and its decoration with poly(A) binding proteins. Mol Cell, 47(2):267-280. 

[68] Schneider, C., Kudla, G., Wlotzka, W., 2012. Transcriptome-wide analysis of exosome targets. Mol Cell, 48(3):422-433. 

[69] Schroeder, S.C., Zorio, D.A., Schwer, B., 2004. A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II. Mol Cell, 13(3):377-387. 

[70] Schwer, B., Mao, X., Shuman, S., 1998. Accelerated mRNA decay in conditional mutants of yeast mRNA capping enzyme. Nucl Acids Res, 26(9):2050-2057. 

[71] Seila, A.C., Calabrese, J.M., Levine, S.S., 2008. Divergent transcription from active promoters. Science, 322(5909):1849-1851. 

[72] Shahbabian, K., Jamalli, A., Zig, L., 2009. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilisEMBO J, 28(22):3523-3533. 

[73] Shobuike, T., Sugano, S., Yamashita, T., 1995. Characterization of cDNA encoding mouse homolog of fission yeast dhp1 + gene: structural and functional conservation. Nucl Acids Res, 23(3):357-361. 

[74] Shobuike, T., Tatebayashi, K., Tani, T., 2001. The dhp1 + gene, encoding a putative nuclear 5′→3′ exoribonuclease, is required for proper chromosome segregation in fission yeast. Nucl Acids Res, 29(6):1326-1333. 

[75] Skružn, M., Schneider, C., Rcz, A., 2009. An endoribonuclease functionally linked to perinuclear mRNP quality control associates with the nuclear pore complexes. PLoS Biol, 7(1):e8

[76] Stevens, A., Poole, T.L., 1995. 5′-Exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5′-exonuclease-1. J Biol Chem, 270(27):16063-16069. 

[77] Taraseviciene, L., Miczak, A., Apirion, D., 1991. The gene specifying RNase E (rne) and a gene affecting mRNA stability (ams) are the same gene. Mol Microbiol, 5(4):851-855. 

[78] Tomecki, R., Kristiansen, M.S., Lykke-Andersen, S., 2010. The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J, 29(14):2342-2357. 

[79] Torchet, C., Bousquet-Antonelli, C., Milligan, L., 2002. Processing of 3′-extended read-through transcripts by the exosome can generate functional mRNAs. Mol Cell, 9(6):1285-1296. 

[80] Vanacova, S., Stefl, R., 2007. The exosome and RNA quality control in the nucleus. EMBO Rep, 8(7):651-657. 

[81] van Hoof, A., Frischmeyer, P.A., Dietz, H.C., 2002. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science, 295(5563):2262-2264. 

[82] Volanakis, A., Passoni, M., Hector, R.D., 2013. Spliceosome-mediated decay (SMD) regulates expression of nonintronic genes in budding yeast. Genes Dev, 27(18):2025-2038. 

[83] Wagschal, A., Rousset, E., Basavarajaiah, P., 2012. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell, 150(6):1147-1157. 

[84] Wang, Y., Liu, C.L., Storey, J.D., 2002. Precision and functional specificity in mRNA decay. PNAS, 99(9):5860-5865. 

[85] West, S., Gromak, N., Proudfoot, N.J., 2004. Human 5′→3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature, 432(7016):522-525. 

[86] Xiang, S., Cooper-Morgan, A., Jiao, X.F., 2009. Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1. Nature, 458(7239):784-788. 

[87] Xu, Z., Wei, W., Gagneur, J., 2009. Bidirectional promoters generate pervasive transcription in yeast. Nature, 457(7232):1033-1037. 

[88] Xue, Y., Bai, X., Lee, I., 2000.  Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol Cell Biol, 20(11):4006-4015. 

[89] Yang, E., van Nimwegen, E., Zavolan, M., 2003. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res, 13(8):1863-1872. 

[90] Yoo, E.J., Jin, Y.H., Jang, Y.K., 2000. Fission yeast Hrp1, a chromodomain ATPase, is required for proper chromosome segregation and its overexpression interferes with chromatin condensation. Nucl Acids Res, 28(9):2004-2011. 

[91] Zhai, L.T., Xiang, S., 2014. mRNA quality control at the 5′ end. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 15(5):438-443. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE