CLC number: S435.121.4+2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-07-09
Cited: 2
Clicked: 3714
Gang-ming Zhan, Fu-ping Wang, Huai-yong Luo, Shu-chang Jiang, Wen-ming Zheng, Li-li Huang, Zhen-sheng Kang. Screening for simple sequence repeat markers in Puccinia striiformis tritici based on genomic sequence[J]. Journal of Zhejiang University Science B, 2015, 16(8): 727-732.
@article{title="Screening for simple sequence repeat markers in Puccinia striiformis tritici based on genomic sequence",
author="Gang-ming Zhan, Fu-ping Wang, Huai-yong Luo, Shu-chang Jiang, Wen-ming Zheng, Li-li Huang, Zhen-sheng Kang",
journal="Journal of Zhejiang University Science B",
volume="16",
number="8",
pages="727-732",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400364"
}
%0 Journal Article
%T Screening for simple sequence repeat markers in Puccinia striiformis tritici based on genomic sequence
%A Gang-ming Zhan
%A Fu-ping Wang
%A Huai-yong Luo
%A Shu-chang Jiang
%A Wen-ming Zheng
%A Li-li Huang
%A Zhen-sheng Kang
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 8
%P 727-732
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400364
TY - JOUR
T1 - Screening for simple sequence repeat markers in Puccinia striiformis tritici based on genomic sequence
A1 - Gang-ming Zhan
A1 - Fu-ping Wang
A1 - Huai-yong Luo
A1 - Shu-chang Jiang
A1 - Wen-ming Zheng
A1 - Li-li Huang
A1 - Zhen-sheng Kang
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 8
SP - 727
EP - 732
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400364
Abstract: Puccinia striiformis f. sp. tritici (Pst) is the obligate biotrophic fungus responsible for stripe rust wheat. In this study, we developed and characterized 20 polymorphic microsatellite markers from the genomic sequence of an isolate of Chinese Pst race CY32. Polymorphism at each simple sequence repeat (SSR) locus was determined using 32 Pst isolates from 7 countries. The number of alleles varied from 2 to 7 across isolates, and the observed and expected heterozygosities ranged from 0.33 to 0.97 (mean 0.62) and 0.23 to 0.73 (mean 0.51), respectively. As expected the genomic SSR markers were more polymorphic than the expressed sequence tag (EST)-SSR markers developed previously. These markers will be more useful for population genetics and molecular genetics studies in Pst.
[1]Ali, S., Gladieux, P., Rahman, H., et al., 2014a. Inferring the contribution of sexual reproduction, migration and off-season survival to the temporal maintenance of microbial populations: a case study on the wheat fungal pathogen Puccinia striiformis f. sp. tritici. Mol. Ecol., 23(3):603-617.
[2]Ali, S., Gladieux, P., Leconte, M., et al., 2014b. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS Pathog., 10(1):e1003903.
[3]Bahri, B., Leconte, M., de Vallavieille-Pope, C., et al., 2009. Isolation of ten microsatellite loci in an EST library of the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Conserv. Genet., 10(5):1425-1428.
[4]Bailey, J., Karaoglu, H., Wellings, C.R., et al., 2013. Isolation and characterization of 25 genome-derived simple sequence repeat markers for Puccinia striiformis f. sp tritici. Mol. Ecol. Resour., 13(4):760-762.
[5]Bayles, R.A., Flath, K., Hovmøller, M.S., et al., 2000. Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe—a case study by the yellow rust sub-group of COST 817. Agronomie, 20(7):805-811.
[6]Botstein, D., White, R.L., Skolnick, M., et al., 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 32(3):314-331.
[7]Brown, J.K.M., Hovmøller, M.S., 2002. Epidemiology aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297(5581):537-541.
[8]Cantu, D., Govindarajulu, M., Kozik, A., et al., 2011. Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. PLoS ONE, 6(8):e24230.
[9]Chen, C.Q., Zheng, W.M., Buchenauer, H., et al., 2009. Isolation of microsatellite loci from expressed sequence tag library of Puccinia striiformis f. sp. tritici. Mol. Ecol. Resour., 9(1):236-238.
[10]Chen, X.M., Line, R.F., Leung, H., 1993. Relationship between virulence variation and DNA polymorphism in Puccinia striiformis. Phytopathology, 83(12):1489-1497.
[11]Chen, X.M., Line, R.F., Leung, H., 1998. Genome scanning for resistance-gene analogs in rice, barley and wheat by high-resolution electrophoresis. Theor. Appl. Genet., 97(3):345-355.
[12]Cheng, P., Chen, X.M., Xu, L.S., et al., 2012. Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol. Ecol. Resour., 12(4):779-781.
[13]Duan, X.Y., Tellier, A., Wan, A., et al., 2010. Puccinia striiformis f. sp. tritici presents high diversity and recombination in the over-summering zone of Gansu, China. Mycologia, 102(1):44-53.
[14]Enjalbert, J., Duan, X.Y., Vautrin, D., et al., 2002. Isolation of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Mol. Ecol. Notes, 2(4):563-565.
[15]Enjalbert, J., Duan, X.Y., Leconte, M., et al., 2005. Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f. sp. tritici) within France. Mol. Ecol., 14(7):2065-2073.
[16]Hovmøller, M.S., Justesen, A.F., Brown, J.K.M., 2002. Clonality and long-distance migration of Puccinia striiformis f. sp. tritici in North-west Europe. Plant Pathol., 51(1):24-32.
[17]Jin, Y., Szabo, L.J., Carson, M., 2010. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology, 100(5):432-435.
[18]Justesen, A.F., Ridout, C.J., Hovmøller, M.S., 2002. The recent history of Puccinia striiformis f. sp. tritici in Denmark as revealed by disease incidence and AFLP markers. Plant Pathol., 51(1):13-23.
[19]Little, R., Manners, J.G., 1967. Production of new physiologic races in Puccinia striiformis (yellow rust) by heterokaryosis. Nature, 213(5074):422.
[20]Liu, K., Muse, S.V., 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9):2128-2129.
[21]Mboup, M., Leconte, M., Gautier, A., et al., 2009. Evidence of genetic recombination in wheat yellow rust populations of a Chinese oversummering area. Fungal Genet. Biol., 46(4):299-307.
[22]Newton, A.C., Caten, C.E., Johnson, R., 1985. Variation for isozymes and double-stranded RNA among isolates of Puccinia striiformis and two other cereal rusts. Plant Pathol., 34(2):235-247.
[23]Park, R.F., Wellings, C.R., 2012. Somatic hybridization in the Uredinales. Annu. Rev. Phytopathol., 50(1):219-239.
[24]Roose-Amsaleg, C., de Vallavieille-Pope, C., Brygoo, Y., et al., 2002. Characterisation of a length polymorphism in the two intergenic spacers of ribosomal RNA in Puccinia striiformis f. sp. tritici, the causal agent of wheat yellow rust. Mycol. Res., 106(8):918-924.
[25]Shan, W.X., Chen, S.Y., Kang, Z.S., et al., 1998. Genetic diversity in Puccinia striiformis Westend. f. sp. tritici revealed by pathogen genome-specific repetitive sequence. Can. J. Botany, 76(4):587-595.
[26]Slate, J., Marshall, T.C., Pemberton, J.M., 2000. A retrospective assessment of the accuracy of the paternity inference program CERVUS. Mol. Ecol., 9(6):801-808.
[27]Wellings, C.R., McIntosh, R.A., 1990. Puccinia striiformis f. sp. tritici in Australia: pathogenic changes during the first 10 years. Plant Pathol., 39(2):316-325.
[28]Zhan, G.M., Chen, X.M., Kang, Z.S., et al., 2012. Comparative virulence phenotypes and molecular genotypes of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen in China and the United States. Fungal Biol., 116(6):643-653.
[29]Zhao, J., Wang, L., Wang, Z.Y., et al., 2013. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China. Phytopathology, 103(9):927-934.
[30]Zheng, W.M., Huang, L.L., Huang, J.Q., et al., 2013. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat. Commun., 4:2673.
Open peer comments: Debate/Discuss/Question/Opinion
<1>