Full Text:   <2543>

Summary:  <1838>

CLC number: S884.4

On-line Access: 2015-10-03

Received: 2015-03-12

Revision Accepted: 2015-07-06

Crosschecked: 2015-09-17

Cited: 8

Clicked: 4486

Citations:  Bibtex RefMan EndNote GB/T7714


Zhi-qiang Lu


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.10 P.875-882


Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori

Author(s):  Lei Zhang, Yan-wen Wang, Zhi-qiang Lu

Affiliation(s):  Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China

Corresponding email(s):   zhiqiang.lu@nwsuaf.edu.cn

Key Words:  Bombyx mori, Midgut, Immune, Hydrogen peroxide, Nitric oxide, Antimicrobial peptide

Lei Zhang, Yan-wen Wang, Zhi-qiang Lu. Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori[J]. Journal of Zhejiang University Science B, 2015, 16(10): 875-882.

@article{title="Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori",
author="Lei Zhang, Yan-wen Wang, Zhi-qiang Lu",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori
%A Lei Zhang
%A Yan-wen Wang
%A Zhi-qiang Lu
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 10
%P 875-882
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500060

T1 - Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori
A1 - Lei Zhang
A1 - Yan-wen Wang
A1 - Zhi-qiang Lu
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 10
SP - 875
EP - 882
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500060

Insect gut epithelial cells produce reactive oxygen species (ROS) and antimicrobial peptides (AMPs) to protect hosts from pathogenic microorganisms. In this study, we evaluate the pathogenicity of Pseudomonas aeruginosa and Bacillus bombysepticus in the silkworm, Bombyx mori. Survival curves show that B. bombysepticus is deadly when larval silkworms are infected orally. Bacterial infection caused intestinal hydrogen peroxide (H2O2) and nitric oxide (NO) levels to increase significantly by 8 and 16 h post-infection (hpi), respectively. Real-time quantitative polymerase chain reaction (qPCR) analysis shows that the transcription levels of dual oxidase (Duox) and catalase (CAT) are highly up-regulated by P. aeruginosa infection at 8 hpi. P. aeruginosa infection induced nitric oxide synthase 2 (NOS2) expression at 16 hpi, which contributes to the generation of NO. mRNA levels of AMP genes, specifically Glovorin 2 and Glovorin 3, which obviously increase during the early infection stage. These results indicate that invading bacteria elevate intestinal ROS and NO levels and induce AMP gene transcription, which contributes to intestinal immune defense.


方法:通过绿脓杆菌(Pseudomonas aeruginosa)及黑胸败血菌(Bacillus bombysepticus)喂食感染家蚕以后,统计家蚕死亡率、检测感染后不同时间肠道内过氧化氢(H2O2)及NO的水平变化;同时利用实时荧光定量聚合酶链反应(qPCR)检测中肠组织中活性氧相关基因及抗菌肽基因的转录情况。
结论:死亡率结果显示,黑胸败血菌比绿脓杆菌具有更强的致病性。活性氧检测结果显示,喂食细菌感后8 h到16 h,家蚕肠道内H2O2及NO水平显著升高。通过qPCR研究ROS相关基因的表达变化的结果显示,P. aeruginosa感染后 8 h 可诱导肠道内双氧化酶(Duox)及过氧化氢酶(CAT)的转录上调,而感染后16 h,P. aeruginosa可诱导NO合成关键基因(一氧化氮核酶2,NOS2)的上调表达,喂食细菌感染同样可以诱导家蚕中肠抗菌肽基因的上调表达,而抗菌肽Glovorin 2及Glovorin 3在感染初期转录上调最为明显。实验结果进一步证明ROS、NO及AMP的产生在家蚕肠道免疫防御中的重要作用。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Basset, A., Khush, R.S., Braun, A., et al., 2000. The phytopathogenic bacteria, Erwinia carotovora, infects Drosophila and activates an immune response. PNAS, 97(7):3376-3381.

[2]Buchon, N., Broderick, N.A., Poidevin, M., et al., 2009. Drosophila melanogaster intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe, 5(2):200-211.

[3]Chieda, Y., Iiyama, K., Yasunaga-Aoki, C., et al., 2005. Pathogenicity of gacA mutant of Pseudomonas aeruginosa PA01 in the silkworm, Bombyx mori. FEMS Microbiol. Lett., 244(1):181-186.

[4]Foley, E., O'Farrell, P.H., 2003. Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev., 17(1):115-125.

[5]Ha, E.M., Oh, C.T., Ryu, J.H., et al., 2005a. An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell, 8(1):125-132.

[6]Ha, E.M., Oh, C.T., Bae, Y.S., et al., 2005b. A direct role for dual oxidase in Drosophila gut immunity. Science, 310(5749):847-850.

[7]Hoffmann, J.A., Reichhart, J.M., 2002. Drosophila innate immunity: an evolutionary perspective. Nat. Immunol., 3(2):121-126.

[8]Huang, L., Cheng, T., Xu, P., et al., 2009. A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection. PLoS ONE, 4(12):e8098.

[9]Imamura, M., Yang, J., Yamakawa, M., 2002. cDNA cloning, characterization and gene expression of nitric oxide synthase from the silkworm, Bombyx mori. Insect Mol. Biol., 11(3):257-265.

[10]Lau, G.W., Goumnerov, B.C., Walendziewicz, C.L., et al., 2003. The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect. Immun., 71(7):4059-4066.

[11]Lemaitre, B., Hoffmann, J., 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol., 25(1):697-743.

[12]Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods, 25(4):402-408.

[13]Nappi, A.J., Vass, E., Frey, F., et al., 2000. Nitric oxide involvement in Drosophila immunity. Nitric Oxide, 4(4):423-430.

[14]Oliveira, J.H.M., Gonçalves, R.L.S., Lara, F.A., et al., 2011. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog., 7(3):e1001320.

[15]Ryu, J.H., Ha, E.M., Oh, C.T., et al., 2006. An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J., 25(15):3693-3701.

[16]Tanaka, H., Sagisaka, A., Nakajima, Y., et al., 2009. Correlation of differential expression of silkworm antimicrobial peptide genes with different amounts of Rel family proteins and their gene transcriptional activity. Biosci. Biotechnol. Biochem., 73(3):599-606.

[17]Tzou, P., Ohresser, S., Ferrandon, D., et al., 2000. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity, 13(5):737-748.

[18]Wink, D.A., Hines, H.B., Cheng, R.Y., et al., 2011. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol., 89(6):873-891.

[19]Wu, S., Zhang, X., Chen, X., et al., 2010a. BmToll9, an arthropod conservative Toll, is likely involved in the local gut immune response in the silkworm, Bombyx mori. Dev. Comp. Immunol., 34(2):93-96.

[20]Wu, S., Zhang, X., He, Y., et al., 2010b. Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development. Dev. Comp. Immunol., 34(11):1191-1198.

[21]Wu, S.C., Liao, C.W., Pan, R.L., et al., 2012. Infection-induced intestinal oxidative stress triggers organ-to-organ immunological communication in Drosophila. Cell Host Microbe, 11(4):410-417.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE