CLC number: S884.4
On-line Access: 2015-10-03
Received: 2015-03-12
Revision Accepted: 2015-07-06
Crosschecked: 2015-09-17
Cited: 8
Clicked: 4635
Lei Zhang, Yan-wen Wang, Zhi-qiang Lu. Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori[J]. Journal of Zhejiang University Science B, 2015, 16(10): 875-882.
@article{title="Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori",
author="Lei Zhang, Yan-wen Wang, Zhi-qiang Lu",
journal="Journal of Zhejiang University Science B",
volume="16",
number="10",
pages="875-882",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500060"
}
%0 Journal Article
%T Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori
%A Lei Zhang
%A Yan-wen Wang
%A Zhi-qiang Lu
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 10
%P 875-882
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500060
TY - JOUR
T1 - Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori
A1 - Lei Zhang
A1 - Yan-wen Wang
A1 - Zhi-qiang Lu
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 10
SP - 875
EP - 882
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500060
Abstract: Insect gut epithelial cells produce reactive oxygen species (ROS) and antimicrobial peptides (AMPs) to protect hosts from pathogenic microorganisms. In this study, we evaluate the pathogenicity of Pseudomonas aeruginosa and Bacillus bombysepticus in the silkworm, Bombyx mori. Survival curves show that B. bombysepticus is deadly when larval silkworms are infected orally. Bacterial infection caused intestinal hydrogen peroxide (H2O2) and nitric oxide (NO) levels to increase significantly by 8 and 16 h post-infection (hpi), respectively. Real-time quantitative polymerase chain reaction (qPCR) analysis shows that the transcription levels of dual oxidase (Duox) and catalase (CAT) are highly up-regulated by P. aeruginosa infection at 8 hpi. P. aeruginosa infection induced nitric oxide synthase 2 (NOS2) expression at 16 hpi, which contributes to the generation of NO. mRNA levels of AMP genes, specifically Glovorin 2 and Glovorin 3, which obviously increase during the early infection stage. These results indicate that invading bacteria elevate intestinal ROS and NO levels and induce AMP gene transcription, which contributes to intestinal immune defense.
[1]Basset, A., Khush, R.S., Braun, A., et al., 2000. The phytopathogenic bacteria, Erwinia carotovora, infects Drosophila and activates an immune response. PNAS, 97(7):3376-3381.
[2]Buchon, N., Broderick, N.A., Poidevin, M., et al., 2009. Drosophila melanogaster intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe, 5(2):200-211.
[3]Chieda, Y., Iiyama, K., Yasunaga-Aoki, C., et al., 2005. Pathogenicity of gacA mutant of Pseudomonas aeruginosa PA01 in the silkworm, Bombyx mori. FEMS Microbiol. Lett., 244(1):181-186.
[4]Foley, E., O'Farrell, P.H., 2003. Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev., 17(1):115-125.
[5]Ha, E.M., Oh, C.T., Ryu, J.H., et al., 2005a. An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell, 8(1):125-132.
[6]Ha, E.M., Oh, C.T., Bae, Y.S., et al., 2005b. A direct role for dual oxidase in Drosophila gut immunity. Science, 310(5749):847-850.
[7]Hoffmann, J.A., Reichhart, J.M., 2002. Drosophila innate immunity: an evolutionary perspective. Nat. Immunol., 3(2):121-126.
[8]Huang, L., Cheng, T., Xu, P., et al., 2009. A genome-wide survey for host response of silkworm, Bombyx mori during pathogen Bacillus bombyseptieus infection. PLoS ONE, 4(12):e8098.
[9]Imamura, M., Yang, J., Yamakawa, M., 2002. cDNA cloning, characterization and gene expression of nitric oxide synthase from the silkworm, Bombyx mori. Insect Mol. Biol., 11(3):257-265.
[10]Lau, G.W., Goumnerov, B.C., Walendziewicz, C.L., et al., 2003. The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect. Immun., 71(7):4059-4066.
[11]Lemaitre, B., Hoffmann, J., 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol., 25(1):697-743.
[12]Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods, 25(4):402-408.
[13]Nappi, A.J., Vass, E., Frey, F., et al., 2000. Nitric oxide involvement in Drosophila immunity. Nitric Oxide, 4(4):423-430.
[14]Oliveira, J.H.M., Gonçalves, R.L.S., Lara, F.A., et al., 2011. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog., 7(3):e1001320.
[15]Ryu, J.H., Ha, E.M., Oh, C.T., et al., 2006. An essential complementary role of NF-κB pathway to microbicidal oxidants in Drosophila gut immunity. EMBO J., 25(15):3693-3701.
[16]Tanaka, H., Sagisaka, A., Nakajima, Y., et al., 2009. Correlation of differential expression of silkworm antimicrobial peptide genes with different amounts of Rel family proteins and their gene transcriptional activity. Biosci. Biotechnol. Biochem., 73(3):599-606.
[17]Tzou, P., Ohresser, S., Ferrandon, D., et al., 2000. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity, 13(5):737-748.
[18]Wink, D.A., Hines, H.B., Cheng, R.Y., et al., 2011. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol., 89(6):873-891.
[19]Wu, S., Zhang, X., Chen, X., et al., 2010a. BmToll9, an arthropod conservative Toll, is likely involved in the local gut immune response in the silkworm, Bombyx mori. Dev. Comp. Immunol., 34(2):93-96.
[20]Wu, S., Zhang, X., He, Y., et al., 2010b. Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development. Dev. Comp. Immunol., 34(11):1191-1198.
[21]Wu, S.C., Liao, C.W., Pan, R.L., et al., 2012. Infection-induced intestinal oxidative stress triggers organ-to-organ immunological communication in Drosophila. Cell Host Microbe, 11(4):410-417.
Open peer comments: Debate/Discuss/Question/Opinion
<1>