CLC number: Q55
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-05-12
Cited: 1
Clicked: 4551
Citations: Bibtex RefMan EndNote GB/T7714
Feng-ying Yan, Wei Xia, Xiao-xu Zhang, Sha Chen, Xin-zheng Nie, Li-chun Qian. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones[J]. Journal of Zhejiang University Science B, 2016, 17(6): 455-464.
@article{title="Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones",
author="Feng-ying Yan, Wei Xia, Xiao-xu Zhang, Sha Chen, Xin-zheng Nie, Li-chun Qian",
journal="Journal of Zhejiang University Science B",
volume="17",
number="6",
pages="455-464",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500317"
}
%0 Journal Article
%T Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones
%A Feng-ying Yan
%A Wei Xia
%A Xiao-xu Zhang
%A Sha Chen
%A Xin-zheng Nie
%A Li-chun Qian
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 6
%P 455-464
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500317
TY - JOUR
T1 - Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones
A1 - Feng-ying Yan
A1 - Wei Xia
A1 - Xiao-xu Zhang
A1 - Sha Chen
A1 - Xin-zheng Nie
A1 - Li-chun Qian
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 6
SP - 455
EP - 464
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500317
Abstract: An extracellular β;-glucosidase produced by Aspergillus terreus was identified, purified, characterized and was tested for the hydrolysis of soybean isoflavone. Matrix-assisted laser desorption/ionization with tandem time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS) revealed the protein to be a member of the glycosyl hydrolase family 3 with an apparent molecular mass of about 120 kDa. The purified β;-glucosidase showed optimal activity at pH 5.0 and 65 °C and was very stable at 50 °C. Moreover, the enzyme exhibited good stability over pH 3.0–8.0 and possessed high tolerance towards pepsin and trypsin. The kinetic parameters Km (apparent Michaelis-Menten constant) and Vmax (maximal reaction velocity) for p-nitrophenyl-β;-
[1]Alekel, D.L., Genschel, U., Koehler, K.J., et al., 2015. Soy Isoflavones for Reducing Bone Loss Study: effects of a 3-year trial on hormones, adverse events, and endometrial thickness in postmenopausal women. Menopause, 22(2):185-197.
[2]Cairns, J.R.K., Esen, A., 2010. β-Glucosidases. Cell. Mol. Life Sci., 67(20):3389-3405.
[3]Chiou, T.Y., Lin, Y.H., Su, N.W., et al., 2010. β-Glucosidase isolated from soybean okara shows specificity toward glucosyl isoflavones. J. Agric. Food Chem., 58(15):8872-8878.
[4]Chuankhayan, P., Rimlumduan, T., Svasti, J., et al., 2007. Hydrolysis of soybean isoflavonoid glycosides by Dalbergia β-glucosidases. J. Agric. Food Chem., 55(6):2407-2412.
[5]Coughlan, M.P., 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng. Rev., 3(1):39-110.
[6]de Cassia Pereira, J., Leite, R.S.R., do Prado, H.F.A., et al., 2015. Production and characterization of β-glucosidase obtained by the solid-state cultivation of the thermophilic fungus Thermomucor indicae-seudaticae N31. Appl. Biochem. Biotechnol., 175(2):723-732.
[7]Elshafei, A.M., Hassan, M.M., Morsi, N.M., et al., 2014. Purification and some kinetic properties of β-glucosidase from Aspergillus terreus NRRL 265. Afr. J. Biotechnol., 10(84):19556-19569.
[8]Fang, W., Song, R., Zhang, X., et al., 2014. Characterization of a novel β-glucosidase from Gongronella sp. W5 and its application in the hydrolysis of soybean isoflavone glycosides. J. Agric. Food Chem., 62(48):11688-11695.
[9]Fujita, A., Alencar, S.M., Park, Y.K., 2015. Conversion of isoflavone glucosides to aglycones by partially purified β-glucosidases from microbial and vegetable sources. Appl. Biochem. Biotechnol., 176(6):1659-1672.
[10]Gao, L., Gao, F., Zhang, D., et al., 2013. Purification and characterization of a new β-glucosidase from Penicillium piceum and its application in enzymatic degradation of delignified corn stover. Bioresour. Technol., 147:658-661.
[11]Gueguen, Y., Chemardin, P., Janbon, G., et al., 1996. A very efficient β-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. J. Agric. Food Chem., 44(8):2336-2340.
[12]Horii, K., Adachi, T., Matsuda, T., et al., 2009. Improvement of isoflavone aglycones production using β-glucosidase secretory produced in recombinant Aspergillus oryzae. J. Mol. Catal. B Enzym., 59(4):297-301.
[13]Imai, S., 2015. Soybean and processed soy foods ingredients, and their role in cardiometabolic risk prevention. Recent Pat. Food Nutr. Agric., 7(2):75-82.
[14]Izumi, T., Piskula, M.K., Osawa, S., et al., 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr., 130(7):1695-1699.
[15]Kaur, A., Chadha, B.S., 2015. Penicillium janthinellum: a source of efficient and high levels of β-glucosidase. Appl. Biochem. Biotechnol., 175(2):937-949.
[16]Kaya, M., Ito, J., Kotaka, A., et al., 2008. Isoflavone aglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillus oryzae on yeast cell surface. Appl. Microbiol. Biotechnol., 79(1):51-60.
[17]Kim, B.N., Yeom, S.J., Kim, Y.S., et al., 2012. Characterization of a β-glucosidase from Sulfolobus solfataricus for isoflavone glycosides. Biotechnol. Lett., 34(1):125-129.
[18]Ko, K.P., 2013. Isoflavones: chemistry, analysis, functions and effects on health and cancer. Asian Pac. J. Cancer Prev., 15(17):7001-7010.
[19]Krisch, J., Bencsik, O., Papp, T., et al., 2012. Characterization of a β-glucosidase with transgalactosylation capacity from the zygomycete Rhizomucor miehei. Bioresour. Technol., 114:555-560.
[20]Kudou, S., Fleury, Y., Welti, D., et al., 1991. Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric. Biol. Chem., 55(9):2227-2233.
[21]Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259):680-685.
[22]Li, G., Jiang, Y., Fan, X.J., et al., 2012. Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Bioresour. Technol., 123:15-22.
[23]Li, X., Zhao, J., Shi, P., et al., 2013. Molecular cloning and expression of a novel β-glucosidase gene from Phialophora sp. G5. Appl. Biochem. Biotechnol., 169(3):941-949.
[24]Matsuura, M., Obata, A., 1993. β-Glucosidases from soybeans hydrolyze daidzin and genistin. J. Food Sci., 58(1):144-147.
[25]Merchant, H.A., McConnell, E.L., Liu, F., et al., 2011. Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development. Eur. J. Pharm. Sci., 42(1-2):3-10.
[26]Nazir, A., Soni, R., Saini, H., et al., 2008. Regulation of expression of multiple β-glucosidases of Aspergillus terreus and their purification and characterization. Bioresources, 4(1):155-171.
[27]Oda, K., Kakizono, D., Yamada, O., et al., 2006. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl. Environ. Microbiol., 72(5):3448-3457.
[28]Peng, Z., Wang, A., Feng, Q., et al., 2014. High-level expression, purification and characterisation of porcine β-defensin 2 in Pichia pastoris and its potential as a cost-efficient growth promoter in porcine feed. Appl. Microbiol. Biotechnol., 98(12):5487-5497.
[29]Ravindranath, M.H., Muthugounder, S., Presser, N., et al., 2004. Anticancer therapeutic potential of soy isoflavone, genistein. In: Cooper, E.L., Yamaguchi, N. (Eds.), Complementary and Alternative Approaches to Biomedicine. Springer US, p.121-165.
[30]Rodionova, N.A., Tavobilov, I.M., Martinovich, L.I., et al., 1987. β-Glucosidases from cellulolytic fungi Aspergillus terreus, Geotrichum candidum, and Trichoderma longibrachiatum as typical glycosidases. Biotechnol. Appl. Biochem., 9(3):239-250.
[31]Song, X., Xue, Y., Wang, Q., et al., 2011. Comparison of three thermostable β-glucosidases for application in the hydrolysis of soybean isoflavone glycosides. J. Agric. Food Chem., 59(5):1954-1961.
[32]Souza, F.H.M., Nascimento, C.V., Rosa, J.C., et al., 2010. Purification and biochemical characterization of a mycelial glucose-and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem., 45(2):272-278.
[33]Ullah, M.F., Bhat, S.H., Husain, E., et al., 2016. Pharmacological intervention through dietary nutraceuticals in gastrointestinal neoplasia. Crit. Rev. Food Sci. Nutr., 56(9):1501-1518
[34]Workman, W.E., Day, D.F., 1982. Purification and properties of β-glucosidase from Aspergillus terreus. Appl. Microbiol. Biotechnol., 44(6):1289-1295.
[35]Yang, S., Wang, L., Yan, Q., et al., 2009. Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomyces thermophila. Food Chem., 115(4):1247-1252.
[36]Yeom, S.J., Kim, B.N., Kim, Y.S., et al., 2012. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. J. Agric. Food Chem., 60(6):1535-1541.
[37]Zhao, J., Guo, C., Tian, C., et al., 2015. Heterologous expression and characterization of a GH3 β-glucosidase from thermophilic fungi Myceliophthora thermophila in Pichia pastoris. Appl. Biochem. Biotechnol., 177(2):511-527.
[38]Zhou, C., Qian, L., Ma, H., Yu, X., et al., 2012. Enhancement of amygdalin activated with β-
[39]List of electronic supplementary materials
[40]Fig. S1 Morphology of A. terrues culture mycelium
Open peer comments: Debate/Discuss/Question/Opinion
<1>