Full Text:   <1714>

Summary:  <1479>

CLC number: S828.5

On-line Access: 2016-12-05

Received: 2016-02-21

Revision Accepted: 2016-05-04

Crosschecked: 2016-11-10

Cited: 1

Clicked: 4085

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xian-yong Ma

http://orcid.org/0000-0002-5712-2573

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.12 P.965-974

http://doi.org/10.1631/jzus.B1600078


Effects of soybean isoflavone on intestinal antioxidant capacity and cytokines in young piglets fed oxidized fish oil


Author(s):  Lin Huang, Xian-yong Ma, Zong-yong Jiang, You-jun Hu, Chun-tian Zheng, Xue-fen Yang, Li Wang, Kai-guo Gao

Affiliation(s):  Institute of Animal Science, Guangdong Academy of Agricultural Sciences, the Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China

Corresponding email(s):   jiangz28@qq.com

Key Words:  Young piglets, Oxidized fish oil, Growth performance, Soybean isoflavone, Antioxidant capacity


Lin Huang, Xian-yong Ma, Zong-yong Jiang, You-jun Hu, Chun-tian Zheng, Xue-fen Yang, Li Wang, Kai-guo Gao. Effects of soybean isoflavone on intestinal antioxidant capacity and cytokines in young piglets fed oxidized fish oil[J]. Journal of Zhejiang University Science B, 2016, 17(12): 965-974.

@article{title="Effects of soybean isoflavone on intestinal antioxidant capacity and cytokines in young piglets fed oxidized fish oil",
author="Lin Huang, Xian-yong Ma, Zong-yong Jiang, You-jun Hu, Chun-tian Zheng, Xue-fen Yang, Li Wang, Kai-guo Gao",
journal="Journal of Zhejiang University Science B",
volume="17",
number="12",
pages="965-974",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600078"
}

%0 Journal Article
%T Effects of soybean isoflavone on intestinal antioxidant capacity and cytokines in young piglets fed oxidized fish oil
%A Lin Huang
%A Xian-yong Ma
%A Zong-yong Jiang
%A You-jun Hu
%A Chun-tian Zheng
%A Xue-fen Yang
%A Li Wang
%A Kai-guo Gao
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 12
%P 965-974
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600078

TY - JOUR
T1 - Effects of soybean isoflavone on intestinal antioxidant capacity and cytokines in young piglets fed oxidized fish oil
A1 - Lin Huang
A1 - Xian-yong Ma
A1 - Zong-yong Jiang
A1 - You-jun Hu
A1 - Chun-tian Zheng
A1 - Xue-fen Yang
A1 - Li Wang
A1 - Kai-guo Gao
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 12
SP - 965
EP - 974
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600078


Abstract: 
To investigate the effect of glycitein, a synthetic soybean isoflavone (ISF), on the intestinal antioxidant capacity, morphology, and cytokine content in young piglets fed oxidized fish oil, 72 4-d-old male piglets were assigned to three treatments. The control group was fed a basal diet containing fresh fish oil, and the other two groups received the same diet except for the substitution with the same dosage of oxidized fish oil alone or with ISF (oxidized fish oil plus ISF). After 21 d of feeding, supplementation of oxidized fish oil increased the levels of malondialdehyde (MDA), oxidized glutathione (GSSG), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), nuclear factor κ B (NF-κB), inducible nitric oxide synthase (iNOS), NO, and Caspase-3 in jejunal mucosa, and decreased the villous height in duodenum and the levels of secretory immunoglobulin A (sIgA) and IL-4 in the jejunal mucosa compared with supplementation with fresh oil. The addition of oxidized fish oil plus ISF partially alleviated this negative effect. The addition of oxidized fish oil plus ISF increased the villous height and levels of sIgA and IL-4 in jejunal mucosa, but decreased the levels of IL-1β and IL-2 in jejunal mucosa (P<0.05) compared with oxidized fish oil. Collectively, these results show that dietary supplementation of ISF could partly alleviate the negative effect of oxidized fish oil by improving the intestinal morphology as well as the antioxidant capacity and immune function in young piglets.

大豆异黄酮对饲喂氧化鱼油新生仔猪肠道抗氧化功能及细胞因子的影响

目的:研究大豆异黄酮对氧化鱼油造成仔猪氧化应激的缓解作用,并初步探讨其作用机制。
创新点:首次在仔猪肠道氧化应激模型中证明大豆异黄酮可缓解仔猪氧化应激,且此作用与提高其免疫功能相关。
方法:将72头平均体重约1.8 kg的4日龄杜×(长×大)三元杂公猪随机分为3组,每组重复6次,每次重复包括4头猪:对照组(饲喂50 g/kg新鲜鱼油),处理组1(添加50 g/kg氧化鱼油)和处理组2(添加50 g/kg氧化鱼油+20 mg/kg大豆异黄酮);基础日粮根据NRC(2012)《猪的营养需要量》配制,每3小时饲喂一次,记录每天采食量;实验期21天结束后,称重,计算平均日采食量、平均日增重及料重比。用苏木精-伊红染色法观察小肠形态结构,并计算绒毛高度和隐窝深度,应用南京建成试剂盒测定肠道中抗氧化酶的活性,应用酶联免疫吸附测定(ELISA)试剂盒测定细胞炎症相关因子和细胞凋亡相关因子的表达。
结论:饲喂氧化鱼油引起新生仔猪肠道产生氧化应激,引起仔猪生长性能下降、肠道发育受损、细胞凋亡增加及免疫功能失调。而添加大豆异黄酮能减缓氧化鱼油造成的肠道损伤,提高肠道粘膜完整性,提高肠道粘膜细胞抗氧化功能和免疫功能。

关键词:仔猪;氧化鱼油;生长性能;大豆异黄酮;抗氧化功能

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Andrew, J.S., Griffith, W.H., Mead, J.F., et al., 1960. Toxicity of air-oxidized soybean oil. J. Nutr., 70:199-210.

[2]Aw, T.Y., 1999. Molecular and cellular responses to oxidative stress and changes in oxidation-reduction imbalance in the intestine. Am. J. Clin. Nutr., 70(4):557-565.

[3]Ban, H., Shigemitsu, K., Yamatsuji, T., 2004. Arginine and Leucine regulate p70 S6 kinase and 4E-BP1 in intestinal epithelial cells. Int. J. Mol. Med., 13(4):537-543.

[4]Banan, A., Fields, J.Z., Zhang, Y., et al., 2001. iNOS upregulation mediates oxidant-induced disruption of F-actin and barrier of intestinal monolayers. Am. J. Physiol. Gastrointest Liver Physiol., 280:G1234-G1246.

[5]Blikslager, A.T., Moeser, A.J., Gookin, J.L., et al., 2007. Restoration of barrier function in injured intestinal mucosa. Physiol. Rev., 87(2):545-564.

[6]Burrin, D.G., Stoll, B., Jiang, R., et al., 2000. Minimal enteral nutrient requirements for intestinal growth in neonatal piglets: how much is enough? Am. J. Clin. Nutr., 71:1603-1610.

[7]Cera, K.R., Mahan, D.C., Cross, R.F., et al., 1988. Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. J. Anim. Sci., 66(2):574-584.

[8]Chamulitrat, W., Skrepnik, N.V., Spitzer. J.J., 1996. Endotoxin-induced oxidative stress in the rat small intestine: role of nitric oxide. Shock, 5(3):217-222.

[9]Chang, R.H., Feng, M.H., Liu, W.H., et al., 1997. Nitric oxide increased interleukin-4 expression in T lymphocytes. Immunology, 90(3):364-369.

[10]Daniel, T., Alexander, M., Hubbard, W.J., et al., 2006. Nitric oxide contributes to the development of a post-injury Th2 T cell phenotype and immune dysfunction. J. Cell. Physiol., 208(2):418-427.

[11]Deng, Q., Xu, J., Yu, B., et al., 2010. Effect of dietary tea polyphenols on growth performance and cell-mediated immune response of post-weaning piglets under oxidative stress. Arch. Anim. Nutr., 64(1):12-21.

[12]de Wilde, A., Lieberherr, M., Colin, C., et al., 2004. A low dose of daidzein acts as an ERβ-selective agonist in trabecular osteoblasts of young female piglets. J. Cell. Physiol., 200(2):253-262.

[13]Dixit, A.K., Bhatnagar, D., Kumar, V., et al., 2012. Antioxidant potential and radioprotective effect of soy isoflavone against gamma irradiation induced oxidative stress. J. Funct. Foods, 4(1):197-206.

[14]Fan, J., Meng, Q., Guo, G., et al., 2010. Effects of early enteral nutrition supplemented with arginine on intestinal mucosal immunity in severely burned mice. Clin. Nutr., 29(1):124-130.

[15]Foti, P., Erba, D., Riso, P., et al., 2005. Comparison between daidzein and genistein antioxidant activity in primary and cancer lymphocytes. Arch. Biochem. Biophys., 433(2):421-427.

[16]Frankel, W.L., Zhang, W., Afonso, J., et al., 1993. Glutamine enhancement of structure and function in transplanted small-intestine in the rat. J. Parenter. Enteral Nutr., 17(1):47-55.

[17]Goerke, M., Eklund, M., Sauer, N., et al., 2012. Standardized ileal digestibilities of crude protein, amino acids, and contents of antinutritional factors, mycotoxins, and isoflavones of European soybean meal imports fed to piglets. J. Anim. Sci., 90(13):4883-4895.

[18]Gookin, J.L., Rhoads, J.M., Argenzio, R.A., 2002. Inducible nitric oxide synthase mediates early epithelial repair of porcine ileum. Am. J. Physiol.-Gastrointest. Liver Physiol., 283(1):G157-G168.

[19]Halliwell, B., Chirico, S., 1993. Lipid peroxidation: its mechanism, measurement, and significance. Am. J. Clin. Nutr., 57(5):715S-724S.

[20]Huang, L., Jiang, Z.Y., Lin, Y.C., et al., 2011. Effects of L-arginine on intestinal development and endogenous arginine-synthesizing enzymes in neonatal pigs. Afr. J. Biotechnol., 10(40):7915-7925.

[21]Jelínková, L., Tučková, L., Cinová, J., et al., 2004. Gliadin stimulates human monocytes to production of IL-8 and TNF-α through a mechanism involving NF-κB. FEBS Lett., 571(1-3):81-85.

[22]Jensen, A.R., Elnif, J., Burrin, D.G., et al., 2001. Development of intestinal immunoglobulin absorption and enzyme activities in neonatal pigs is diet dependent. J. Nutr., 131(12):3259-3265.

[23]Jiang, Z.Y., Jiang, S.Q., Lin, Y.C., et al., 2007. Effects of soybean isoflavone on growth performance, meat quality, and antioxidation in male broilers. Poult. Sci., 86(7):1356-1362.

[24]Jiang, Z.Y., Zhou, G.L., Lin, Y.C., et al., 2011. Effects of soybean isoflavones on in vitro antioxidative capacity of satellite cells of porcine skeletal muscles. Agric. Sci. Chin., 10(1):120-125 (in Chinese).

[25]John, S.A., Wendell, H.G., James, F.M., et al., 1959. Toxicity of air-oxidized soybean oil. J. Nutr., 70(2):199-210.

[26]Kalinski, P., Moser, M., 2005. Consensual immunity: success driven development of T-helper-1 and T-helper-2 responses. Nat. Rev. Immunol., 5(3):251-260.

[27]Kelley, D.S., 2001. Modulation of human immune and inflammatory responses by dietary fatty acids. Nutrition, 17(7-8):669-673.

[28]Kim, M.J., Ryu, G.R., Kang, J.H., et al., 2004. Inhibitory effects of epicatechin on interleukin-1β-induced inducible nitric oxide synthase expression in RINm5F cells and rat pancreatic islets by down-regulation of NF-κB activation. Biochem. Pharmacol., 68(9):1775-1785.

[29]Kudsk, K.A., 2001. Importance of enteral feeding in maintaining gut integrity. Tech. Gastrointest. Endosc., 3(1):2-8.

[30]Lackeyram, D., Mine, Y., Widowski, T., et al., 2012. The in vivo infusion of hydrogen peroxide induces oxidative stress and differentially affects the activities of small intestinal carbohydrate digestive enzymes in the neonatal pig. J. Anim. Sci., 90(Suppl. 4):418-420.

[31]Lee, C.H., Yang, L., Xu, J.Z., et al., 2005. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem., 90(4):735-741.

[32]Leitch, G.J., He, Q., 1999. Reactive nitrogen and oxygen species ameliorate experimental cryptosporidiosis in the neonatal BALB/c mouse model. Infect. Immun., 67:5885-5891.

[33]Li, D.F., Nelssen, J.L., Reddy, P.G., et al., 1990. Transient hypersensitivity to soybean meal in early-weaned pig. J. Anim. Sci., 68(6):1790-1799.

[34]Li, D.F., Nelssen, J.L., Reddy, P.G., et al., 1991. Measuring suitability of soybean products for early-weaned pigs with immunological criteria. J. Anim. Sci., 69(8):3299-3307.

[35]Li, Y., Ahmed, F., Ali, S., et al., 2005. Inactivation of nuclear factor κB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res., 65(15):6934-6943.

[36]Liu, J.B., Chang, S.K.C., Wiesenborn, D., 2005. Antioxidant properties of soybean isoflavone extract and tofu in vitro and in vivo. J. Agric. Food. Chem., 53(6):2333-2340.

[37]Liu, J.F., Lee, Y.W., 1998. Vitamin C supplementation restores the impaired Vitamin E status of guinea pigs fed oxidized frying oil. J. Nutr., 128(1):116-122.

[38]Maeda, T., Miyazono, Y., Ito, K., et al., 2010. Oxidative stress and enhanced paracellular permeability in the small intestine of methotrexate-treated rats. Cancer Chemother. Pharmacol., 65(6):1117-1123.

[39]Mau, M., Kalbe, C., Viergutz, T., et al., 2008. Effects of dietary isoflavones on proliferation and DNA integrity of myoblasts derived from newborn piglets. Pediatr. Res., 63(1):39-45.

[40]Mercer, D.W., Smith, G.S., Cross, J.M., et al., 1996. Effects of lipopolysaccharide on intestinal injury: potential role of nitric oxide and lipid peroxidation. J. Surg. Res., 63(1):185-192.

[41]Moreto, M., Perez-Bosque, A., 2009. Dietary plasma proteins, the intestinal immune system, and the barrier functions of the intestinal mucosa. J. Anim. Sci., 87(14_Suppl.):E92-E100.

[42]Morimoto, M., Watanabe, T., Yamori, M., et al., 2009. Isoflavones regulate innate immunity and inhibit experimental colitis. J. Gastroenterol. Hepatol., 24(6):1123-1129.

[43]Otani, K., Shimizu, S., Chijiiwa, K., et al., 2000. Administration of bacterial lipopolysaccharide to rats induces heme oxygenase-1 and formation of antioxidant bilirubin in the intestinal mucosa. Digest. Dis. Sci., 45(12):2313-2319.

[44]Ozacmak, H.S., Ozacmak, V.H., Barut, F., et al., 2014. Pretreatment with mineralocorticoid receptor blocker reduces intestinal injury induced by ischemia and reperfusion: involvement of inhibition of inflammatory response, oxidative stress, nuclear factor κB, and inducible nitric oxide synthase. J. Surg. Res., 191(2):350-361.

[45]Pampusch, M.S., Bennaars, A.M., Harsch, S., et al., 1998. Inducible nitric oxide synthase expression in porcine immune cells. Vet. Immunol. Immunopathol., 61:279-289.

[46]Parikh, N.A., Katsetos, C.D., Ashraf, Q.M., et al., 2003. Hypoxia-induced Caspase-3 activation and DNA fragmentation in cortical neurons of newborn piglets: role of nitric oxide. Neurochem. Res., 28(9):1351-1357.

[47]Pruett, S.B., 2003. Stress and the immune system. Pathophysiology, 9(3):133-153.

[48]Science and Technology Ministry of China, 2006. The guiding suggestion about treating experimental animals amicably. Document No. 398.

[49]Shang, H., Tsai, H., Chiu, W., et al., 2004. Effects of Arginine supplementation on mucosal immunity in rats with septic peritonitis. Clin. Nutr., 23(4):561-569.

[50]Slater, T.F., 1984. Free radical mechanisms in tissue injury. Biochem. J., 222(1):1-15.

[51]Taylor-Robinson, A.W., 1997. Inhibition of IL2 production by nitric oxide: a novel self regulatory mechanism for Th1 cell proliferation. Immunol. Cell Biol., 75(2):167-175.

[52]Valachovicova, T., Slivova, V., Bergman, H., et al., 2005. Soy isoflavones suppress invasiveness of breast cells by the inhibition of NF-κB/AP-1-dependent and independent pathways. Int. J. Oncol., 25(5):1389-1395.

[53]VázquezAñón, M., Jenkins, T., 2007. Effects of feeding oxidized fat with or without dietary antioxidants on nutrient digestibility, microbial nitrogen and fatty acid metabolism. J. Dairy Sci., 90(9):4361-4867.

[54]Xi, P.B., Jiang, Z.Y., Zheng, C.T., et al., 2011. Regulation of protein metabolism by glutamine: implications for nutrition and health. Front. Biosci., 16(1):578-597.

[55]Yousef, M.I., Kamel, K.I., Esmail, A.M., et al., 2004. Antioxidant activities and lipid lowering effects of isoflavone in male rabbits. Food Chem. Toxicol., 42(9):1497-1503.

[56]Ypsilantis, P., Tentes, L., Lambropoulou, M., et al., 2008. Prophylaxis with mesna prevents oxidative stress induced by ischemia reperfusion in the intestine via inhibition of nuclear factor-κB activation. J. Gastroenterol. Hepatol., 23(2):328-335.

[57]Yuan, S.B., 2007. Impacts of Oxidative Stress on Piglets and the Anti-stress Effect and Mechanism of Selenium. PhD Thesis, Sichuan Agriculture University, China (in Chinese).

[58]Zhan, X., Qie, Y., Wang, M., et al., 2011. Selenomethionine: an effective selenium source for sow to improve Se distribution, antioxidant status, and growth performance of pig offspring. Biol. Trace Elem. Res., 142(3):481-491.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE