CLC number: Q37
On-line Access: 2017-11-06
Received: 2017-03-11
Revision Accepted: 2017-07-28
Crosschecked: 2017-10-20
Cited: 0
Clicked: 3951
Jin-huan Chen, Dong-zhi Zhang, Chong Zhang, Mei-long Xu, Wei-lun Yin. Physiological characterization, transcriptomic profiling, and microsatellite marker mining of Lycium ruthenicum[J]. Journal of Zhejiang University Science B, 2017, 18(11): 1002-1021.
@article{title="Physiological characterization, transcriptomic profiling, and microsatellite marker mining of Lycium ruthenicum",
author="Jin-huan Chen, Dong-zhi Zhang, Chong Zhang, Mei-long Xu, Wei-lun Yin",
journal="Journal of Zhejiang University Science B",
volume="18",
number="11",
pages="1002-1021",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700135"
}
%0 Journal Article
%T Physiological characterization, transcriptomic profiling, and microsatellite marker mining of Lycium ruthenicum
%A Jin-huan Chen
%A Dong-zhi Zhang
%A Chong Zhang
%A Mei-long Xu
%A Wei-lun Yin
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 11
%P 1002-1021
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700135
TY - JOUR
T1 - Physiological characterization, transcriptomic profiling, and microsatellite marker mining of Lycium ruthenicum
A1 - Jin-huan Chen
A1 - Dong-zhi Zhang
A1 - Chong Zhang
A1 - Mei-long Xu
A1 - Wei-lun Yin
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 11
SP - 1002
EP - 1021
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700135
Abstract: Lycium ruthenicum is a perennial shrub species that has attracted considerable interest in recent years owing to its nutritional value and ability to thrive in a harsh environment. However, only extremely limited transcriptomic and genomic data related to this species can be found in public databases, thereby limiting breeding research and molecular function analysis. In this study, we characterized the physiological and biochemical responses to saline-alkaline mixed stress by measuring photochemical efficiency, chlorophyll content, and protective enzyme activity. We performed global transcriptomic profiling analysis using the Illumina platform. After optimizing the assembly, a total of 68 063 unique transcript sequences with an average length of 877 bp were obtained. Among these sequences, 4096 unigenes were upregulated and 4381 unigenes were down-regulated after saline-alkaline mixed treatment. The most abundant transcripts and over-represented items were assigned to gene ontology (GO) terms or Kyoto Encyclopedia of Genes and the Genomes (KEGG) categories for overall unigenes, and differentially expressed unigenes were analyzed in detail. Based on this set of RNA-sequencing data, a total of 9216 perfect potential simple sequence repeats (SSRs) were identified within 7940 unigenes with a frequency of 1/6.48 kb. A total of 77 primer pairs were synthesized and examined in wet-laboratory experiments, of which 68 loci (88.3%) were successfully amplified with specific products. Eleven pairs of polymorphic primers were verified in 225 individuals from nine populations. The inbreeding coefficient and the polymorphism information content value ranged from 0.011 to 0.179 and from 0.1112 to 0.6750, respectively. The observed and expected heterozygosities ranged from 0.064 to 0.840 and from 0.115 to 0.726, respectively. Nine populations were clustered into three groups based on a genetic diversity study using these novel markers. Our data will be useful for functional genomic investigations of L. ruthenicum and could be used as a basis for further research on the genetic diversity, genetic differentiation, and gene flow of L. ruthenicum and other closely related species.
[1]Alam, S.M., Naqvi, S.S.M., Ansari, R., 1999. Impact of soil pH on nutrient uptake by crop plants. In: Pessarakli, M. (Ed.), Handbook of Plant and Crop Stress. Marcel Dekker, Inc., New York, p.51-60.
[2]Altintas, A., Kosar, M., Kirimer, N., et al., 2006. Composition of the essential oils of Lyceum barbarum and L. ruthenicum fruits. Chem. Nat. Compd., 42(1):24-25.
[3]Babuin, M.F., Campestre, M.P., Rocco, R., et al., 2014. Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization. PLoS ONE, 9(5):e97106.
[4]Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57(1):289-300.
[5]Bi, Y.H., Wu, Y.Y., Zhou, Z.G., 2014. Genetic diversity of wild population of Pyropia haitanensis based on SSR analysis. Biochem. Syst. Ecol., 54:307-312.
[6]Chagné, D., Chaumeil, P., Ramboer, A., et al., 2004. Cross-species transferability and mapping of genomic and cDNA SSRs in pines. Theor. Appl. Genet., 109(6):1204-1214.
[7]Chang, S., Puryear, J., Cairney, J., 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep., 11(2):113-116.
[8]Chen, J.H., Xia, X.L., Yin, W.L., 2009. Expression profiling and functional characterization of a DREB2-type gene from Populuse uphratica. Biochem. Biophys. Res. Commun., 378(3):483-487.
[9]Chen, J.H., Tian, Q.Q., Pang, T., et al., 2014. Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populuse uphratica. BMC Genomics, 15:326.
[10]Conesa, A., Gotz, S., Garcia-Gomez, J.M., et al., 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18):3674-3676.
[11]Diao, Q.N., Song, Y.J., Shi, D.M., et al., 2016. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 17(12):916-930.
[12]Doyle, J., Doyle, J.L., 1987. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem. Bull., 19(11):11-15.
[13]Ge, Y., Li, Y., Zhu, Y.M., et al., 2010. Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol., 10:153.
[14]Grabherr, M.G., Haas, B.J., Yassour, M., et al., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29(7):644-652.
[15]Grace, S.C., Logan, B.A., 2000. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos. Trans. R. Soc. B., 355(1402):1499-1510.
[16]Guo, Y.Y., Yu, H.Y., Kong, D.S., et al., 2016. Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings. Photosynthetica, 54(4):524-531.
[17]Hong, Z., Lakkineni, K., Zhang, Z., et al., 2000. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol., 122(4):1129-1136.
[18]Iseli, C., Jongeneel, C.V., Bucher, P., 1999. ESTScan a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. ISMB, 99:138-148.
[19]Jin, H., Plaha, P., Park, J.Y., et al., 2006. Comparative EST profiles of leaf and root of leymuschinensis, a xerophilous grass adapted to high pH sodic soil. Plant Sci., 170(6):1081-1086.
[20]Knapp, S., Bohs, L., Nee, M., et al., 2004. Solanaceae a model for linking genomics with biodiversity. Comp. Funct. Genom., 5(3):285-291.
[21]Liu, T., Zhu, S., Tang, Q., et al., 2013. De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud). BMC Genomics, 14:125.
[22]Liu, Y.D., Zhang, G.W., Liu, D.L., 2014. Simultaneous measurement of chlorophyll and water content in navel orange leaves based on hyperspectral imaging. Spectroscopy, 29(4):40-44.
[23]Liu, Y.L., Zeng, S.H., Sun, W., et al., 2014. Comparative analysis of carotenoid accumulation in two goji (Lycium barbarum L. and L. ruthenicum Murr.) fruits. BMC Plant Biol., 14:269.
[24]Liu, Z.G., Shu, Q.Y., Wang, L., et al., 2012. Genetic diversity of the endangered and medically important Lycium ruthenicum Murr. revealed by sequence-related amplified polymorphism (SRAP) markers. Biochem. Syst. Ecol., 45:86-97.
[25]Luo, J., Huang, C., Peng, F., et al., 2017. Effect of salt stress on photosynthesis and related physiological characteristics of Lycium ruthenicum Murr. Acta Agric. Scand. B, 67(8):1-13.
[26]Mortazavi, A., Williams, B.A., McCue, K., et al., 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5(7):621-628.
[27]Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3):583-590.
[28]Peng, Q., Liu, H., Lei, H., et al., 2016. Relationship between structure and immunological activity of an arabinogalactan from Lyceum ruthenicum. Food Chem., 194:595-600.
[29]Pertea, G., Huang, X.Q., Liang, F., et al., 2003. TIGR gene indices clustering tools (TGICL):a software system for fast clustering of large EST datasets. Bioinformatics, 19(5):651-652.
[30]Petrussa, E., Braidot, E., Zancani, M., et al., 2013. Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci., 14(7):14950-14973.
[31]Polle, A., Otter, T., Seifert, F., 1994. Apoplastic peroxidases and lignification in needles of norway spruce (Piceaabies L.). Plant Physiol., 106(1):53-60.
[32]Qiu, Y., Li, X., Zhi, H., et al., 2009. Differential expression of salt tolerance related genes in Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 10(11):847-851.
[33]Rohlf, F.J., 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Exeter Software, Setauket, New York, USA.
[34]Rozen, S., Skaletsky, H.J., 2000. Primer3 on the WWW for general users and for biologist programmers. In: Misener, S., Krawetz, S.A. (Eds.), Bioinformatics Methods and Protocols. Methods in Molecular Biology™, Vol. 132. Humana Press, Totowa, NJ, p.365-386.
[35]Rumeu, B., Sosa, P.A., Nogales, M., et al., 2013. Development and characterization of 13 SSR markers for an endangered insular juniper (Juniperus cedrus Webb & Berth.). Conserv. Genet. Resour., 5(2):457-459.
[36]Sato, S., Tabata, S., Hirakawa, H., et al., 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400):635-641.
[37]Shi, D.C., Sheng, Y.M., 2005. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ. Exp. Bot., 54(1):8-21.
[38]Spychalla, J.P., Desborough, S.L., 1990. Superoxide dismutase, catalase, and α-tocopherol content of stored potato tubers. Plant physiol., 94(3):1214-1218.
[39]Tang, J., Yan, Y., Ran, L., et al., 2017. Isolation, antioxidant property and protective effect on PC12 cell of the main anthocyanin in fruit of Lycium ruthenicum Murray. J. Funct. Foods, 30:97-107.
[40]Wang, J., Li, B., Meng, Y., et al., 2015. Transcriptomic profiling of the salt-stress response in the halophyte Halogeton glomeratus. BMC Genomics, 16:169.
[41]Wang, L., Li, J., Zhao, J., et al., 2015. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae. Front. Plant Sci., 6:248.
[42]Wang, Y.C., Chu, Y.G., Liu, G.F., et al., 2007. Identification of expressed sequence tags in an alkali grass (Puccinellia tenuiflora) cDNA library. J. Plant Physiol., 164(1):78-89.
[43]Wang, Z., Fang, B., Chen, J., et al., 2010. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics, 11: 726.
[44]Wei, L., Li, S., Liu, S., et al., 2014. Transcriptome analysis of Houttuynia cordata Thunb. by Illumina paired-end RNA sequencing and SSR marker discovery. PLoS ONE, 9(1):e84105.
[45]Wheeler, D.L., Church, D.M., Lash, A.E., et al., 2002. Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Res., 30(1):13-16.
[46]Xu, X., Pan, S.K., Cheng, S.F., et al., 2011. Genome sequence and analysis of the tuber crop potato. Nature, 475(7355):189-195.
[47]Ye, J., Fang, L., Zheng, H.K., et al., 2006. WEGO a web tool for plotting GO annotations. Nucleic Acids Res., 34(Suppl. 2):W293-W297.
[48]Yeh, F.C., Yang, R.C., Boyle, T., 1999. POPGENE Version 1.31. Microsoft Window-Based Freeware for Population Genetic Analysis. University of Alberta and the Centre for International Forestry Research, CA.
[49]Zheng, J., Ding, C.X., Wang, L.S., et al., 2011. Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau. Food Chem., 126(3):859-865.
[50]Zhu, J.K., 2001. Cell signaling under salt, water and cold stresses. Curr. Opin. Plant Biol., 4(5):401-406.
[51]List of electronic supplementary materials
[52]Table S1 Primer sequences used in qPCR analysis
[53]Table S2 Top 100 most abundant transcripts in control sample
[54]Table S3 Top 100 most abundant transcripts in salt-alkaline mixed treated sample
[55]Table S4 Upregulated transcripts between the control and the saline-alkaline-treated sample
[56]Table S5 Downregulated unigenes between the control and treated sample
[57]Table S6 Top 300 most upregulated transcripts after treatment with annotation
[58]Fig. S1 Function classifications of GO terms of all L. ruthenicum transcripts
[59]Fig. S2 COG functional classification of the L. ruthenicum transcriptome
Open peer comments: Debate/Discuss/Question/Opinion
<1>