Full Text:   <2197>

Summary:  <1379>

Suppl. Mater.: 

CLC number: Q939.46

On-line Access: 2018-04-04

Received: 2017-03-28

Revision Accepted: 2017-05-11

Crosschecked: 2018-03-12

Cited: 0

Clicked: 3582

Citations:  Bibtex RefMan EndNote GB/T7714


Yong-chao Li


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2018 Vol.19 No.4 P.274-284


A novel endogenous badnavirus exists in Alhagi sparsifolia

Author(s):  Yong-chao Li, Jian-guo Shen, Guo-huan Zhao, Qin Yao, Wei-min Li

Affiliation(s):  Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China; more

Corresponding email(s):   yaoqin@ujs.edu.cn, liweimin01@caas.cn

Key Words:  Badnavirus, Endogenous Alhagi bacilliform virus, Nuclear integration

Yong-chao Li, Jian-guo Shen, Guo-huan Zhao, Qin Yao, Wei-min Li. A novel endogenous badnavirus exists in Alhagi sparsifolia[J]. Journal of Zhejiang University Science B, 2018, 19(4): 274-284.

@article{title="A novel endogenous badnavirus exists in Alhagi sparsifolia",
author="Yong-chao Li, Jian-guo Shen, Guo-huan Zhao, Qin Yao, Wei-min Li",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A novel endogenous badnavirus exists in Alhagi sparsifolia
%A Yong-chao Li
%A Jian-guo Shen
%A Guo-huan Zhao
%A Qin Yao
%A Wei-min Li
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 4
%P 274-284
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700171

T1 - A novel endogenous badnavirus exists in Alhagi sparsifolia
A1 - Yong-chao Li
A1 - Jian-guo Shen
A1 - Guo-huan Zhao
A1 - Qin Yao
A1 - Wei-min Li
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 4
SP - 274
EP - 284
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700171

We report the recovery of a 7068-nt viral sequence from the “viral fossils” embedded in the genome of Alhagi sparsifolia, a typical desert plant. Although the full viral genome remains to be completed, the putative genome structure, the deduced amino acids and phylogenetic analysis unambiguously demonstrate that this viral sequence represents a novel species of the genus Badnavirus. The putative virus is tentatively termed Alhagi bacilliform virus (ABV). Southern blotting and inverse polymerase chain reaction (PCR) data indicate that the ABV-related sequence is integrated into the A. sparsifolia genome, and probably does not give rise to functional episomal virus. Molecular evidence that the ABV sequence exists widely in A. sparsifolia is also presented. To our knowledge, this is the first endogenous badnavirus identified from plants in the Gobi desert, and may provide new clues on the evolution, geographical distribution as well as the host range of the badnaviruses.


方法:利用分段聚合酶链式反应(PCR)克隆疏叶骆驼刺杆状病毒(Alhagi bacilliform virus,ABV)的基因组序列;通过基因组分析、序列比对和进化树分析阐明ABV的进化地位;用Southern印迹杂交和反向PCR分析ABV序列与宿主基因组的关系;并通过PCR检测确定ABV在我国西北地区疏叶骆驼刺中的分布.
结论:本研究获得了7068 nt 的ABV基因组序列,根据基因组结构、保守序列比对及进化树分析,推测ABV是一种新杆状DNA病毒.分子检测证据表明,ABV基因组序列已整合进入疏叶骆驼刺基因组中,但没有产生游离病毒.此外,对我国西北11个不同地区的疏叶骆驼刺进行PCR检测,结果显示其中9个地区的疏叶骆驼刺均含有ABV序列,由此表明ABV在我国西北地区的疏叶骆驼刺中广泛存在.


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Bhat AI, Hohn T, Selvarajan R, 2016. Badnaviruses: the current global scenario. Viruses, 8(6):177.

[2]Chabannes M, Baurens FC, Duroy PO, et al., 2013. Three infectious viral species lying in wait in the banana genome. J Virol, 87(15):8624-8637.

[3]Cheng CP, Lockhart BEL, Olszewski NE, 1996. The ORF I and II proteins of Commelina yellow mottle virus are virion-associated. Virology, 223(2):263-271.

[4]Fauquet CM, Mayo MA, Maniloff J, et al., 2005. Virus taxonomy, classification and nomenclature of viruses. Eighth Report of the International Committee on the Taxonomy of Viruses. Elsevier Academic Press, San Diego.

[5]Feschotte C, Gilbert C, 2012. Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet, 13(4):283-296.

[6]Gawel NJ, Jarret RL, 1991. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol Biol Rep, 9(3):262-266.

[7]Gayral P, Noa-Carrazana JC, Lescot M, et al., 2008. A single Banana streak virus integration event in the banana genome as the origin of infectious endogenous pararetrovirus. J Virol, 82(13):6697-6710.

[8]Geering ADW, Olszewski NE, Dahal G, et al., 2001. Analysis of the distribution and structure of integrated Banana streak virus DNA in a range of Musa cultivars. Mol Plant Pathol, 2(4):207-213.

[9]Geering ADW, Olszewski NE, Harper G, et al., 2005a. Banana contains a diverse array of endogenous badnaviruses. J Gen Virol, 86(2):511-520.

[10]Geering ADW, Pooggin MM, Olszewski NE, et al., 2005b. Characterisation of Banana streak Mysore virus and evidence that its DNA is integrated in the B genome of cultivated Musa. Arch Virol, 150(4):787-796.

[11]Geijskes RJ, Braithwaite KS, Dale JL, et al., 2002. Sequence analysis of an Australian isolate of Sugarcane bacilliform badnavirus. Arch Virol, 147(12):2393-2404.

[12]Gregor W, Mette MF, Staginnus C, et al., 2004. A distinct endogenous pararetrovirus family in Nicotiana tomentosiformis, a diploid progenitor of polyploid tobacco. Plant Physiol, 134(3):1191-1199.

[13]Hansen CN, Harper G, Heslop-Harrison JS, 2005. Characterisation of pararetrovirus-like sequences in the genome of potato (Solanum tuberosum). Cytogenet Genome Res, 110(1-4):559-565.

[14]Hany U, Adams IP, Glover R, et al., 2014. The complete genome sequence of Piper yellow mottle virus (PYMoV). Arch Virol, 159(2):385-388.

[15]Harper G, Hull R, Lockhart B, et al., 2002. Viral sequences integrated into plant genomes. Ann Rev Phytopathol, 40(1):119-136.

[16]Harper G, Hart D, Moult S, et al., 2004. Banana streak virus is very diverse in Uganda. Virus Res, 100(1):51-56.

[17]Hohn T, Fütterer J, Hull R, 1997. The Proteins and functions of plant pararetroviruses: knowns and unknowns. Crit Rev Plant Sci, 16(1):133-161.

[18]Hull R, Harper G, Lockhart B, 2000. Viral sequences integrated into plant genomes. Trends Plant Sci, 5(9):362-365.

[19]Iskra-Caruana ML, Duroy PO, Chabannes M, et al., 2014. The common evolutionary history of badnaviruses and banana. Infect Genet Evol, 21:83-89.

[20]Jacquot E, Hagen LS, Jacquemond M, et al., 1996. The open reading frame 2 product of cacao swollen shoot badnavirus is a nucleic acid-binding protein. Virology, 225(1): 191-195.

[21]Kazmi SA, Yang Z, Hong N, et al., 2015. Characterization by small RNA sequencing of Taro bacilliform CH virus (TaBCHV), a novel badnavirus. PLoS ONE, 10(7): e0134147.

[22]King AMQ, Adams MJ, Lefkowitz EJ, et al., 2012. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, CA, USA.

[23]Laney AG, Hassan M, Tzanetakis IE, 2012. An integrated badnavirus is prevalent in fig germplasm. Phytopathology, 102(12):1182-1189.

[24]Medberry SL, Lockhart BE, Olszewski NE, 1990. Properties of Commelina yellow mottle virus’s complete DNA sequence, genomic discontinuities and transcript suggest that it is a pararetrovirus. Nucleic Acids Res, 18(18): 5505-5513.

[25]Philippe G, Marie I, 2009. Phylogeny of Banana streak virus reveals recent and repetitive endogenization in the genome of its banana host (Musa sp.). J Mol Evol, 69(1):65-80.

[26]Seal S, Muller E, 2007. Molecular analysis of a full-length sequence of a new yam badnavirus from Dioscorea sansibarensis. Arch Virol, 152(4):819-825.

[27]Seal S, Turaki A, Muller E, et al., 2014. The prevalence of badnaviruses in West African yams (Dioscorea cayenensis-rotundata) and evidence of endogenous pararetrovirus sequences in their genomes. Virus Res, 186:144-154.

[28]Staginnus C, Richert-Pöggeler KR, 2006. Endogenous pararetroviruses: two-faced travelers in the plant genome. Trends Plant Sci, 11(10):485-491.

[29]Su L, Gao S, Huang Y, et al., 2007. Complete genomic sequence of Dracaena mottle virus, a distinct badnavirus. Virus Genes, 35(2):423-429.

[30]Tamura K, Peterson D, Peterson N, et al., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28(10):2731-2739.

[31]Tzafrir I, Ayala-Navarrete L, Lockhart BEL, et al., 1997. The N-terminal portion of the 216-kDa polyprotein of Commelina yellow mottle badnavirus is required for virus movement but not for replication. Virology, 232(2): 359-368.

[32]Umber M, Filloux D, Muller E, et al., 2014. The genome of African yam (Dioscorea cayenensis-rotundata complex) hosts endogenous sequences from four distinct badnavirus species. Mol Plant Pathol, 15(8):790-801.

[33]Wang Y, Cheng X, Wu X, et al., 2014. Characterization of complete genome and small RNA profile of pagoda yellow mosaic associated virus, a novel badnavirus in China. Virus Res, 188:103-108.

[34]Wu H, Zhang Y, Zhang W, et al., 2015. Transcriptomic analysis of the primary roots of Alhagi sparsifolia in response to water stress. PLoS ONE, 10(3):e0120791.

[35]Xu D, Mock R, Kinard G, et al., 2011. Molecular analysis of the complete genomic sequences of four isolates of Gooseberry vein banding associated virus. Virus Genes, 43(1):130-137.

[36]Yang IC, Hafner GJ, Dale JL, et al., 2003. Genomic characterisation of Taro bacilliform virus. Arch Virol, 148(5): 937-949.

[37]Yang Z, Nicolaisen M, Olszewski NE, et al., 2005. Sequencing, improved detection, and a novel form of Kalanchoë top-spotting virus. Plant Dis, 89(3):298-302.

[38]List of electronic supplementary materials

[39]Table S1 Primers used in this study

[40]Table S2 Badnaviruses species for phylogenetic analysis

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE