CLC number: Q493.9
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-09-12
Cited: 0
Clicked: 4088
Xiao-Meng Sun, Hai-Qing Ye, Jing-Bo Liu, Lei Wu, Ding-Bo Lin, Ya-Li Yu, Feng Gao. Assessment of anti-diabetic activity of peanut shell polyphenol extracts[J]. Journal of Zhejiang University Science B, 2018, 19(10): 764-775.
@article{title="Assessment of anti-diabetic activity of peanut shell polyphenol extracts",
author="Xiao-Meng Sun, Hai-Qing Ye, Jing-Bo Liu, Lei Wu, Ding-Bo Lin, Ya-Li Yu, Feng Gao",
journal="Journal of Zhejiang University Science B",
volume="19",
number="10",
pages="764-775",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700401"
}
%0 Journal Article
%T Assessment of anti-diabetic activity of peanut shell polyphenol extracts
%A Xiao-Meng Sun
%A Hai-Qing Ye
%A Jing-Bo Liu
%A Lei Wu
%A Ding-Bo Lin
%A Ya-Li Yu
%A Feng Gao
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 10
%P 764-775
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700401
TY - JOUR
T1 - Assessment of anti-diabetic activity of peanut shell polyphenol extracts
A1 - Xiao-Meng Sun
A1 - Hai-Qing Ye
A1 - Jing-Bo Liu
A1 - Lei Wu
A1 - Ding-Bo Lin
A1 - Ya-Li Yu
A1 - Feng Gao
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 10
SP - 764
EP - 775
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700401
Abstract: The present study aimed to evaluate the anti-diabetic property of peanut shell polyphenol extracts (PSPEs). Diabetic rats were oral-administrated with PSPE at doses of 50, 100, and 200 mg/kg body weight (BW) per day for 28 consecutive days, with metformin (Met) as a positive control. The results showed that, similar to the Met treatment, administration of PSPE caused significant decreases in food intake, water intake, fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, and methane dicarboxylic aldehyde in serum, and significant increases in BW, insulin level, high-density lipoprotein cholesterol, superoxide dismutase, glutathione, and liver glycogen. Further, glucose tolerance was markedly improved in the PSPE-treated diabetic groups. Histopathological results showed that PSPE improved cellular structural and pathological changes in liver, kidney, and pancreatic islets. Collectively, the results indicated that the hypoglycemic effects of PSPE on high-fat diet/streptozotocin (HFD/STZ)-induced diabetes are comparable to Met, though their exact mechanism actions are still under investigation. Therefore, the current study suggests that PSPE could be a potential health-care food supplement in the management of diabetes.
[1]Al-Attar AM, Zari TA, 2010. Influences of crude extract of tea leaves, Camellia sinensis, on streptozotocin diabetic male albino mice. Saudi J Biol Sci, 17(4):295-301.
[2]Bell DS, 2001. Importance of postprandial glucose control. South Med J, 94(8):804-809.
[3]Bertoni AG, Hundley WG, Massing MW, et al., 2004. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care, 27(3):699-703.
[4]Chandirasegaran G, Elanchezhiyan C, Ghosh K, et al., 2017. Berberine chloride ameliorates oxidative stress, inflammation and apoptosis in the pancreas of streptozotocin induced diabetic rats. Biomed Pharmacother, 95:175-185.
[5]Chen FF, Xiong H, Wang JX, et al., 2013. Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats. J Ethnopharmacol, 149(3):729-736.
[6]Chen L, Tian GW, Tang WD, et al., 2016. Protective effect of luteolin on streptozotocin-induced diabetic renal damage in mice via the regulation of RIP140/NF-κB pathway and insulin signalling pathway. J Funct Foods, 22:93-100.
[7]Chen P, Zhang QX, Dang H, et al., 2014. Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Nutrition, 30(9):1061-1068.
[8]Duh PD, Yen GC, 1995. Changes in antioxidant activity and components of methanolic extracts of peanut hulls irradiated with ultraviolet light. Food Chem, 54(2):127-131.
[9]Esmaeili MA, Yazdanparast R, 2004. Hypoglycaemic effect of Teucrium polium: studies with rat pancreatic islets. J Ethnopharmacol, 95(1):27-30.
[10]Fischer AH, Jacobson KA, Rose J, et al., 2008. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc, 2008:pdb.prot4986.
[11]Gao F, Ye HQ, Yu YL, et al., 2011. Lack of toxicological effect through mutagenicity test of polyphenol extracts from peanut shells. Food Chem, 129(3):920-924.
[12]Gavin JR, Alberti KGMM, Davidson MB, et al., 2003. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 26(S1):S5-S20.
[13]Ginsberg HN, 2000. Insulin resistance and cardiovascular disease. J Clin Invest, 106(4):453-458.
[14]Gray AM, Flatt PR, 1997. Nature’s own pharmacy: the diabetes perspective. Proc Nutr Soc, 56(1B):507-517.
[15]Han RP, Han P, Cai ZH, et al., 2008. Kinetics and isotherms of Neutral Red adsorption on peanut husk. J Environ Sci, 20(9):1035-1041.
[16]Kasala ER, Bodduluru LN, Barua CC, et al., 2016. Antioxidant and antitumor efficacy of Luteolin, a dietary flavone on benzo(a)pyrene-induced experimental lung carcinogenesis. Biomed Pharmacother, 82:568-577.
[17]Kaur N, Kishore L, Singh R, 2016. Antidiabetic effect of new chromane isolated from Dillenia indica L. leaves in streptozotocin induced diabetic rats. J Funct Foods, 22: 547-555.
[18]Kim YM, Wang MH, Rhee HI, 2004. A novel α-glucosidase inhibitor from pine bark. Carbohyd Res, 339(3):715-717.
[19]King GL, 2008. The role of inflammatory cytokines in diabetes and its complications. J Periodontol, 79(8S):1527-1534.
[20]Korejo NA, Wei QW, Shan AH, et al., 2016. Effects of concomitant diabetes mellitus and hyperthyroidism on testicular and epididymal histoarchitecture and steroidogenesis in male animals. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 17(11):850-863.
[21]Krentz AJ, Clough G, Byrne CD, 2007. Interactions between microvascular and macrovascular disease in diabetes: pathophysiology and therapeutic implications. Diabetes Obes Metab, 9(6):781-791.
[22]Li WL, Zheng HC, Bukuru J, et al., 2004. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol, 92(1):1-21.
[23]Lü H, Chen J, Li WL, et al., 2009a. Hypoglycemic and hypolipidemic effects of the total triterpene acid fraction from Folium Eriobotryae. J Ethnopharmacol, 122(3):486-491.
[24]Lü H, Chen J, Li WL, et al., 2009b. Hypoglycemic effect of the total flavonoid fraction from Folium Eriobotryae. Phytomedicine, 16(10):967-971.
[25]Ong KW, Hsu A, Song LX, et al., 2011. Polyphenols-rich Vernonia amygdalina shows anti-diabetic effects in streptozotocin-induced diabetic rats. J Ethnopharmacol, 133(2):598-607.
[26]Patel DK, Prasad SK, Kumar R, et al., 2012. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific J Trop Biomed, 2(4):320-330.
[27]Phillips DIW, Clark PM, Hales CN, et al., 1994. Understanding oral glucose tolerance: comparison of glucose or insulin measurements during the oral glucose tolerance test with specific measurements of insulin resistance and insulin secretion. Diabetic Med, 11(3):286-292.
[28]Qiu JY, Chen LL, Zhu QJ, et al., 2012. Screening natural antioxidants in peanut shell using DPPH-HPLC-DAD-TOF/MS methods. Food Chem, 135(4):2366-2371.
[29]Roden M, Bernroider E, 2003. Hepatic glucose metabolism in humans—its role in health and disease. Best Pract Res Clin Endocrinol Metab, 17(3):365-383.
[30]Russo D, Malafronte N, Frescura D, et al., 2015. Antioxidant activities and quali-quantitative analysis of different Smallanthus sonchifolius [(Poepp. and Endl.) H. Robinson] landrace extracts. Nat Prod Res, 29(17):1673-1677.
[31]Saini AK, Kumar HSA, Sharma SS, 2007. Preventive and curative effect of edaravone on nerve functions and oxidative stress in experimental diabetic neuropathy. Eur J Pharmacol, 568(1-3):164-172.
[32]Sepici-Dincel A, Açıkgöz Ş, Çevik C, et al., 2007. Effects of in vivo antioxidant enzyme activities of myrtle oil in normoglycaemic and alloxan diabetic rabbits. J Ethnopharmacol, 110(3):498-503.
[33]Sharma SB, Nasir A, Prabhu KM, et al., 2006. Antihyperglycemic effect of the fruit-pulp of Eugenia jambolana in experimental diabetes mellitus. J Ethnopharmacol, 104(3):367-373.
[34]Shobana S, Sreerama YN, Malleshi NG, 2009. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem, 115(4):1268-1273.
[35]Shulman GI, 2000. Cellular mechanisms of insulin resistance. J Clin Invest, 106(2):171-176.
[36]Srivastava Y, Venkatakrishna-Bhatt H, Verma Y, et al., 1993. Antidiabetic and adaptogenic properties of Momordica charantia extract: an experimental and clinical evaluation. Phytother Res, 7(4):285-289.
[37]Stumvoll M, Goldstein BJ, van Haeften TW, 1900. Type 2 diabetes: principles of pathogenesis and therapy. Lancet, 365(9467):1333-1346.
[38]Stumvoll M, Mitrakou A, Pimenta W, et al., 2000. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care, 23(3):295-301.
[39]Torres-Piedra M, Ortiz-Andrade R, Villalobos-Molina R, et al., 2010. A comparative study of flavonoid analogues on streptozotocin-nicotinamide induced diabetic rats: quercetin as a potential antidiabetic agent acting via 11β-hydroxysteroid dehydrogenase type 1 inhibition. Eur J Med Chem, 45(6):2606-2612.
[40]Upadhyay G, Gupta SO, Singh MP, 2010. Pyrogallol-mediated toxicity and natural antioxidants: triumphs and pitfalls of preclinical findings and their translational limitations. Chem-Biol Interact, 183(3):333-340.
[41]Wang LL, Duan GL, Lu Y, et al., 2013. The effect of simvastatin on glucose homeostasis in streptozotocin induced type 2 diabetic rats. J Diabetes Res, 2013:274986.
[42]Wang Y, Xin X, Jin ZD, et al., 2011. Anti-diabetic effects of pentamethylquercetin in neonatally streptozotocin-induced diabetic rats. Eur J Pharmacol, 668(1-2):347-353.
[43]Yadav N, Morris G, Harding SE, et al., 2009. Various non-injectable delivery systems for the treatment of diabetes mellitus. Endocr Metab Immune Disord Drug Targets, 9(1):1-13.
[44]Yeh PT, Huang HW, Yang CM, et al., 2016. Astaxanthin inhibits expression of retinal oxidative stress and inflammatory mediators in streptozotocin-induced diabetic rats. PLoS ONE, 11(1):e0146438.
[45]Yen GC, Duh PD, 1994. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agric Food Chem, 42(3):629-632.
[46]Yu YL, Gao F, Deng XM, et al., 2013. Inhibitory effect of polyphenol extracts from peanut shells on the activity of pancreatic α-amylase activity in vitro. J Food Agric Environ, 11(2):38-42.
[47]Zhang GW, Hu MM, He L, et al., 2013. Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food Bioprod Process, 91(2):158-168.
[48]Zhang SW, Liu L, Su YL, et al., 2011. Antioxidative activity of lactic acid bacteria in yogurt. Afr J Microbiol Res, 5(29):5194-5201.
[49]Zhang Y, Ren CJ, Lu GB, et al., 2014. Purification, characterization and anti-diabetic activity of a polysaccharide from mulberry leaf. Regul Toxicol Pharm, 70(3):687-695.
[50]Zizkova P, Stefek M, Rackova L, et al., 2017. Novel quercetin derivatives: from redox properties to promising treatment of oxidative stress related diseases. Chem-Biol Interact, 265:36-46.
Open peer comments: Debate/Discuss/Question/Opinion
<1>