Full Text:   <1880>

Summary:  <1425>

Suppl. Mater.: 

CLC number: Q756

On-line Access: 2019-11-21

Received: 2019-06-26

Revision Accepted: 2019-09-18

Crosschecked: 2019-11-01

Cited: 0

Clicked: 3231

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yong-Quan Li

https://orcid.org/0000-0001-6013-4068

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2019 Vol.20 No.12 P.983-994

http://doi.org/10.1631/jzus.B1900344


Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB


Author(s):  Zi-Yue Li, Qing-Ting Bu, Jue Wang, Yu Liu, Xin-Ai Chen, Xu-Ming Mao, Yong-Quan Li

Affiliation(s):  Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   lyq@zju.edu.cn

Key Words:  Streptomyces, Cryptic gene cluster, Site-directed mutagenesis, Secondary metabolism


Zi-Yue Li, Qing-Ting Bu, Jue Wang, Yu Liu, Xin-Ai Chen, Xu-Ming Mao, Yong-Quan Li. Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB[J]. Journal of Zhejiang University Science B, 2019, 20(12): 983-994.

@article{title="Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB",
author="Zi-Yue Li, Qing-Ting Bu, Jue Wang, Yu Liu, Xin-Ai Chen, Xu-Ming Mao, Yong-Quan Li",
journal="Journal of Zhejiang University Science B",
volume="20",
number="12",
pages="983-994",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1900344"
}

%0 Journal Article
%T Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB
%A Zi-Yue Li
%A Qing-Ting Bu
%A Jue Wang
%A Yu Liu
%A Xin-Ai Chen
%A Xu-Ming Mao
%A Yong-Quan Li
%J Journal of Zhejiang University SCIENCE B
%V 20
%N 12
%P 983-994
%@ 1673-1581
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1900344

TY - JOUR
T1 - Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB
A1 - Zi-Yue Li
A1 - Qing-Ting Bu
A1 - Jue Wang
A1 - Yu Liu
A1 - Xin-Ai Chen
A1 - Xu-Ming Mao
A1 - Yong-Quan Li
J0 - Journal of Zhejiang University Science B
VL - 20
IS - 12
SP - 983
EP - 994
%@ 1673-1581
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1900344


Abstract: 
Genome sequencing projects revealed massive cryptic gene clusters encoding the undiscovered secondary metabolites in Streptomyces. To investigate the metabolic products of silent gene clusters in Streptomyces chattanoogensis L10 (CGMCC 2644), we used site-directed mutagenesis to generate ten mutants with point mutations in the highly conserved region of rpsL (encoding the ribosomal protein S12) or rpoB (encoding the RNA polymerase β-subunit). Among them, L10/RpoB (H437Y) accumulated a dark pigment on a yeast extract-malt extract-glucose (YMG) plate. This was absent in the wild type. After further investigation, a novel angucycline antibiotic named anthrachamycin was isolated and determined using nuclear magnetic resonance (NMR) spectroscopic techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and electrophoretic mobility shift assay (EMSA) were performed to investigate the mechanism underlying the activation effect on the anthrachamycin biosynthetic gene cluster. This work indicated that the rpoB-specific missense H437Y mutation had activated anthrachamycin biosynthesis in S. chattanoogensis L10. This may be helpful in the investigation of the pleiotropic regulation system in Streptomyces.

恰塔努加链霉菌L10中rpoB基因突变激活蒽塔恰霉素生物合成基因簇的研究

目的:运用核糖体技术激活恰塔努加链霉菌Streptomyces chattanoogensis L10中的隐性基因簇,进一步研究突变菌株的次级代谢产物并初步探索其对应的生物合成基因簇激活机制.
创新点:首次分离得到了蒽塔恰霉素,并初步探索了RpoB突变株中蒽塔恰霉素生物合成基因簇的激活机制.
方法:采用核糖体工程技术,对S.chattanoogensis L10的RpsL和RpoB的高度保守区域定点突变,使用高效液相色谱法(HPLC)检测突变株的代谢产物.运用一维和二维核磁共振(1D NMR、 2D NMR)解析L10/RpoB (H437Y)的次级代谢产物蒽塔恰霉素的化学结构,通过铁离子还原法(FRAP)和ABTS自由基清除等实验研究其抗氧化活性.采用实时荧光定量聚合酶链式反应(qRT-PCR)和凝胶电泳迁移率分析(EMSA)探索蒽塔恰霉素生物合成基因簇的激活机制.
结论:L10/RpoB (H437Y)中蒽塔恰霉素的生物合成基因簇被激活.qRT-PCR和EMSA结果表明:RNA聚合酶β亚基结构改变,可能影响全局性调控基因的转录水平,并激活蒽塔恰霉素生物合成基因簇.

关键词:链霉菌;隐性基因簇;定点突变;次级代谢产物

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bao J, He F, Li YM, et al., 2018. Cytotoxic antibiotic angucyclines and actinomycins from the Streptomyces sp. XZHG99T. J Antibiot (Tokyo), 71(12):1018-1024.

[2]Bao T, Wang Y, Li YT, et al., 2016. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 17(12):941-951.

[3]Bérdy J, 2005. Bioactive microbial metabolites. J Antibiot (Tokyo), 58(1):1-26.

[4]Chen JW, Wu QH, Hawas UW, et al., 2016. Genetic regulation and manipulation for natural product discovery. Appl Microbiol Biotechnol, 100(7):2953-2965.

[5]Craney A, Ahmed S, Nodwell J, 2013. Towards a new science of secondary metabolism. J Antibiot (Tokyo), 66(7):387-400.

[6]Demain AL, 2014. Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol, 41(12):185-201.

[7]Du YL, Shen XL, Yu P, et al., 2011. Gamma-butyrolactone regulatory system of Streptomyces chattanoogensis links nutrient utilization, metabolism, and development. Appl Environ Microbiol, 77(23):8415-8426.

[8]El-Toumy SA, El Souda SS, Mohamed TK, et al., 2012. Anthraquinone glycosides from Cassia roxburghii and evaluation of its free radical scavenging activity. Carbohydr Res, 360:47-51.

[9]Erel O, 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem, 37(4):277-285.

[10]Floegel A, Kim DO, Chung SJ, et al., 2011. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal, 24(7):1043-1048.

[11]Francis GW, Aksnes DW, Holt Ø, 1998. Assignment of the 1H and 13C NMR spectra of anthraquinone glycosides from Rhamnus frangula. Magn Reson Chem, 36(10):769-772.

[12]Fu P, Jamison M, La S, et al., 2014. Inducamides A-C, chlorinated alkaloids from an RNA polymerase mutant strain of Streptomyces sp. Org Lett, 16(21):5656-5659.

[13]Gomez-Escribano JP, Bibb MJ, 2011. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol, 4(2):207-215.

[14]Grkovic T, Abdelmohsen UR, Othman EM, et al., 2014. Two new antioxidant actinosporin analogues from the calcium alginate beads culture of sponge-associated Actinokineospora sp. strain EG49. Bioorg Med Chem Lett, 24(21):5089-5092.

[15]Guo YY, Li H, Zhou ZX, et al., 2015. Identification and biosynthetic characterization of natural aromatic azoxy products from Streptomyces chattanoogensis L10. Org Lett, 17(24):6114-6117.

[16]Guo ZK, Liu SB, Jiao RH, et al., 2012. Angucyclines from an insect-derived actinobacterium Amycolatopsis sp. HCa1 and their cytotoxic activity. Bioorg Med Chem Lett, 22(24):7490-7493.

[17]Hesketh A, Sun J, Bibb M, 2001. Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol Microbiol, 39(1):136-144.

[18]Hopwood DA, 2006. Soil to genomics: the Streptomyces chromosome. Annu Rev Genet, 40:1-23.

[19]Hu HF, Zhang Q, Ochi K, 2002. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase β subunit) of Streptomyces lividans. J Bacteriol, 184(14):3984-3991.

[20]Inaoka T, Takahashi K, Yada H, et al., 2004. RNA polymerase mutation activates the production of a dormant antibiotic 3,3'-neotrehalosadiamine via an autoinduction mechanism in Bacillus subtilis. J Biol Chem, 279(5):3885-3892.

[21]Kharel MK, Pahari P, Shepherd MD, et al., 2012. Angucyclines: biosynthesis, mode-of-action, new natural products, and synthesis. Nat Prod Rep, 29(2):264-325.

[22]Komatsu M, Uchiyama T, Omura S, et al., 2010. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA, 107(6):2646-2651.

[23]Liu SP, Yu P, Yuan PH, et al., 2015. Sigma factor WhiGch positively regulates natamycin production in Streptomyces chattanoogensis L10. Appl Microbiol Biotechnol, 99(6):2715-2726.

[24]Lombó F, Abdelfattah MS, Braña AF, et al., 2009. Elucidation of oxygenation steps during oviedomycin biosynthesis and generation of derivatives with increased antitumor activity. ChemBioChem, 10(2):296-303.

[25]López-Garcia MT, Santamarta I, Liras P, 2010. Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA-deleted mutant. Microbiology, 156(8):2354-2365.

[26]Ma M, Rateb ME, Teng QH, et al., 2015. Angucyclines and angucyclinones from Streptomyces sp. CB01913 featuring C-ring cleavage and expansion. J Nat Prod, 78(10):2471-2480.

[27]Makino K, Amemura M, Kawamoto T, et al., 1996. DNA binding of PhoB and its interaction with RNA polymerase. J Mol Biol, 259(1):15-26.

[28]Mao XM, Luo S, Zhou RC, et al., 2015. Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA. J Biol Chem, 290(12):7992-8001.

[29]Martínez-Hackert E, Stock AM, 1997. The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. Structure, 5(1):109-124.

[30]Moore BS, 2008. Extending the biosynthetic repertoire in ribosomal peptide assembly. Angew Chem Int Ed Engl, 47(49):9386-9388.

[31]Muth G, Nußbaumer B, Wohlleben W, et al., 1989. A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet, 219(3):341-348.

[32]Nett M, Ikeda H, Moore BS, 2009. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep, 26(11):1362-1384.

[33]Ochi K, 2017. Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot (Tokyo), 70:25-40.

[34]Ohnishi Y, Kameyama S, Onaka H, et al., 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol, 34(1):102-111.

[35]Okamoto-Hosoya Y, Okamoto S, Ochi K, 2003. Development of antibiotic-overproducing strains by site-directed mutagenesis of the rpsL gene in Streptomyces lividans. Appl Environ Microbiol, 69(7):4256-4259.

[36]Rebets Y, Ostash B, Luzhetskyy A, et al., 2003. Production of landomycins in Streptomyces globisporus 1912 and S. cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiol Lett, 222(1):149-153.

[37]Rebets Y, Ostash B, Luzhetskyy A, et al., 2005. DNA-binding activity of LndI protein and temporal expression of the gene that upregulates landomycin E production in Streptomyces globisporus 1912. Microbiology, 151(1):281-290.

[38]Rebets Y, Dutko L, Ostash B, et al., 2008. Function of lanI in regulation of landomycin A biosynthesis in Streptomyces cyanogenus S136 and cross-complementation studies with Streptomyces antibiotic regulatory proteins encoding genes. Arch Microbiol, 189(2):111-120.

[39]Staunton J, Weissman KJ, 2001. Polyketide biosynthesis: a millennium review. Nat Prod Rep, 18(4):380-416.

[40]Tanaka Y, Kasahara K, Hirose Y, et al., 2013. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J Bacteriol, 195(13):2959-2970.

[41]Wang GJ, Hosaka T, Ochi K, 2008. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol, 74(9):2834-2840.

[42]Wang TJ, Shan YM, Li H, et al., 2017. Multiple transporters are involved in natamycin efflux in Streptomyces chattanoogensis L10. Mol Microbiol, 103(4):713-728.

[43]Yang KQ, Han L, He JY, et al., 2001. A repressor-response regulator gene pair controlling jadomycin B production in Streptomyces venezuelae ISP5230. Gene, 279(2):165-173.

[44]Yu P, Liu SP, Bu QT, et al., 2014. WblAch, a pivotal activator of natamycin biosynthesis and morphological differentiation in Streptomyces chattanoogensis L10, is positively regulated by AdpAch. Appl Environ Microbiol, 80(22):6879-6887.

[45]Yushchuk O, Ostash I, Vlasiuk I, et al., 2018. Heterologous AdpA transcription factors enhance landomycin production in Streptomyces cyanogenus S136 under a broad range of growth conditions. Appl Microbiol Biotechnol, 102(19):8419-8428.

[46]Zhou ZX, Xu QQ, Bu QT, et al., 2015. Genome mining-directed activation of a silent angucycline biosynthetic gene cluster in Streptomyces chattanoogensis. ChemBioChem, 16(3):496-502.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE