Full Text:   <960>

Summary:  <1013>

Suppl. Mater.: 

CLC number: S432.1

On-line Access: 2020-09-07

Received: 2020-05-28

Revision Accepted: 2020-07-21

Crosschecked: 2020-08-17

Cited: 0

Clicked: 1812

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wen-jun Zhao

https://orcid.org/0000-0001-6980-1584

Wei-min Li

https://orcid.org/0000-0002-9117-1213

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2020 Vol.21 No.9 P.716-726

http://doi.org/10.1631/jzus.B2000281


Genome-wide identification of the Sec-dependent secretory protease genes in Erwinia amylovora and analysis of their expression during infection of immature pear fruit


Author(s):  Wang-bin Zhang, Hai-lin Yan, Zong-cai Zhu, Chao Zhang, Pei-xiu Du, Wen-jun Zhao, Wei-min Li

Affiliation(s):  College of Plant Science, Tarim University, Alar 843300, China; more

Corresponding email(s):   wenjunzhao@188.com, liweimin01@caas.cn

Key Words:  Erwinia amylovora, Sec-dependent pathway, Protease, Gene expression, Plant infection


Wang-bin Zhang, Hai-lin Yan, Zong-cai Zhu, Chao Zhang, Pei-xiu Du, Wen-jun Zhao, Wei-min Li. Genome-wide identification of the Sec-dependent secretory protease genes in Erwinia amylovora and analysis of their expression during infection of immature pear fruit[J]. Journal of Zhejiang University Science B, 2020, 21(9): 716-726.

@article{title="Genome-wide identification of the Sec-dependent secretory protease genes in Erwinia amylovora and analysis of their expression during infection of immature pear fruit",
author="Wang-bin Zhang, Hai-lin Yan, Zong-cai Zhu, Chao Zhang, Pei-xiu Du, Wen-jun Zhao, Wei-min Li",
journal="Journal of Zhejiang University Science B",
volume="21",
number="9",
pages="716-726",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2000281"
}

%0 Journal Article
%T Genome-wide identification of the Sec-dependent secretory protease genes in Erwinia amylovora and analysis of their expression during infection of immature pear fruit
%A Wang-bin Zhang
%A Hai-lin Yan
%A Zong-cai Zhu
%A Chao Zhang
%A Pei-xiu Du
%A Wen-jun Zhao
%A Wei-min Li
%J Journal of Zhejiang University SCIENCE B
%V 21
%N 9
%P 716-726
%@ 1673-1581
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2000281

TY - JOUR
T1 - Genome-wide identification of the Sec-dependent secretory protease genes in Erwinia amylovora and analysis of their expression during infection of immature pear fruit
A1 - Wang-bin Zhang
A1 - Hai-lin Yan
A1 - Zong-cai Zhu
A1 - Chao Zhang
A1 - Pei-xiu Du
A1 - Wen-jun Zhao
A1 - Wei-min Li
J0 - Journal of Zhejiang University Science B
VL - 21
IS - 9
SP - 716
EP - 726
%@ 1673-1581
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2000281


Abstract: 
The general secretory (Sec) pathway represents a common mechanism by which bacteria secrete proteins, including virulence factors, into the extracytoplasmic milieu. However, there is little information about this system, as well as its associated secretory proteins, in relation to the fire blight pathogen Erwinia amylovora. In this study, data mining revealed that E. amylovora harbors all of the essential components of the Sec system. Based on this information, we identified putative Sec-dependent secretory proteases in E. amylovora on a genome-wide scale. Using the programs SignalP, LipoP, and Phobius, a total of 15 putative proteases were predicted to contain the N-terminal signal peptides (SPs) that might link them to the sec-dependent pathway. The activities of the predicted SPs were further validated using an Escherichia coli-based alkaline phosphatase (PhoA) gene fusion system that confirmed their extracytoplasmic property. Transcriptional analyses showed that the expression of 11 of the 15 extracytoplasmic protease genes increased significantly when E. amylovora was used to inoculate immature pears, suggesting their potential roles in plant infection. The results of this study support the suggestion that E. amylovora might employ the Sec system to secrete a suite of proteases to enable successful infection of plants, and shed new light on the interaction of E. amylovora with host plants.

梨火疫菌Sec依赖分泌蛋白酶的全基因组鉴定及其在侵染幼梨过程中的基因表达分析

目的:鉴定参与梨火疫菌侵染的重要Sec依赖分泌蛋白酶.
创新点:构建了梨火疫菌Sec依赖分泌蛋白酶编码基因在侵染寄主植物过程中的时序表达图谱.
方法:利用生物信息学与大肠杆菌PhoA检测体系两者结合,在全基因组水平筛选并鉴定梨火疫菌的Sec依赖分泌蛋白酶;利用逆转录实时定量聚合酶链反应(RT-qPCR),分析Sec依赖分泌蛋白酶编码基因在梨火疫菌侵染寄主植物过程中转录表达的时序变化.
结论:梨火疫菌含有完整的Sec分泌系统,可由此分泌至少15种蛋白酶,其中11种蛋白酶可能在病原菌侵染寄主植物过程中发挥功能.

关键词:梨火疫菌;Sec依赖分泌系统;蛋白酶;基因表达;侵染

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Asselin JE, Bonasera JM, Kim JF, et al., 2011. Eop1 from a Rubus strain of Erwinia amylovora functions as a host- range limiting factor. Phytopathology, 101(8):935-944.

[2]Bardoel BW, van der Ent S, Pel MJC, et al., 2011. Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathog, 7(8):e1002206.

[3]Bogdanove AJ, Wei ZM, Zhao L, et al., 1996. Erwinia amylovora secretes harpin via a type III pathway and contains a homolog of yopN of Yersinia spp. J Bacteriol, 178(6):1720-1730.

[4]Boureau T, ElMaarouf-Bouteau H, Garnier A, et al., 2006. DspA/E, a type III effector essential for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants. Mol Plant Microbe Interact, 19(1):16-24.

[5]Boureau T, Siamer S, Perino C, et al., 2011. The HrpN effector of Erwinia amylovora, which is involved in type III translocation, contributes directly or indirectly to callose elicitation on apple leaves. Mol Plant Microbe Interact, 24(5):577-584.

[6]Castiblanco LF, Triplett LR, Sundin GW, 2018. Regulation of effector delivery by type III secretion chaperone proteins in Erwinia amylovora. Front Microbiol, 9:146.

[7]Cianciotto NP, White RC, 2017. Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect Immun, 85(5):e00014-17.

[8]Cranford-Smith T, Huber D, 2018. The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. FEMS Microbiol Lett, 365(11):fny093.

[9]Degrave A, Fagard M, Perino C, et al., 2008. Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana. Mol Plant Microbe Interact, 21(8):1076-1086.

[10]Degrave A, Moreau M, Launay A, et al., 2013. The bacterial effector DspA/E is toxic in Arabidopsis thaliana and is required for multiplication and survival of fire blight pathogen. Mol Plant Pathol, 14(5):506-517.

[11]Dow JM, Davies HA, Daniels MJ, 1998. A metalloprotease from Xanthomonas campestris that specifically degrades proline/hydroxyproline-rich glycoproteins of the plant extracellular matrix. Mol Plant Microbe Interact, 11(11):1085-1093.

[12]Eastgate JA, 2000. Erwinia amylovora: the molecular basis of fireblight disease. Mol Plant Pathol, 1(6):325-329.

[13]Emeriewen OF, Wöhner T, Flachowsky H, et al., 2019. Malus hosts-Erwinia amylovora interactions: strain pathogenicity and resistance mechanisms. Fron Plant Sci, 10:551.

[14]Feng T, Nyffenegger C, Højrup P, et al., 2014. Characterization of an extensin-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1. Appl Microbiol Biotechnol, 98(24):10077-10089.

[15]Figaj D, Ambroziak P, Przepiora T, et al., 2019. The role of proteases in the virulence of plant pathogenic bacteria. Int J Mol Sci, 20(3):672.

[16]Frees D, Brøndsted L, Ingmer H, 2013. Bacterial proteases and virulence. In: Dougan DA (Ed.), Regulated Proteolysis in Microorganisms. Springer, Dordrecht, p.161-192.

[17]Gaudriault S, Malandrin L, Paulin JP, et al., 1997. DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol Microbiol, 26(5):1057-1069.

[18]Green ER, Mecsas J, 2016. Bacterial secretion systems: an overview. Microbiol Spectr, 4(1):VMBF-0012-2015.

[19]Holland IB, 2010. The extraordinary diversity of bacterial protein secretion mechanisms. In: Economou A (Ed.), Protein Secretion. Humana Press, New York, p.1-20.

[20]Hong L, Liu JL, Midoun SZ, et al., 2017. Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(10):833-844.

[21]Hoy B, Löwer M, Weydig C, et al., 2010. Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep, 11(10):798-804.

[22]Juncker AS, Willenbrock H, von Heijne G, et al., 2003. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci, 12(8):1652-1662.

[23]Käll L, Krogh A, Sonnhammer ELL, 2004. A combined transmembrane topology and signal peptide prediction method. J Mol Biol, 338(5):1027-1036.

[24]Käll L, Krogh A, Sonnhammer ELL, 2007. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res, 35(S2):W429-W432.

[25]Kamber T, Pothier JF, Pelludat C, et al., 2017. Role of the type VI secretion systems during disease interactions of Erwinia amylovora with its plant host. BMC Genomics, 18:628.

[26]Kharadi RR, Castiblanco LF, Waters CM, et al., 2018. Phosphodiesterase genes regulate amylovoran production, biofilm formation, and virulence in Erwinia amylovora. Appl Environ Microbiol, 85:e02233-18.

[27]Kim WS, Gardan L, Rhim SL, et al., 1999. Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai). Int J Syst Bacteriol, 49(2):899-906.

[28]Kim WS, Jock S, Paulin JP, et al., 2001. Molecular detection and differentiation of Erwinia pyrifoliae and host range analysis of the Asian pear pathogen. Plant Dis, 85(11):1183-1188.

[29]Koczan JM, McGrath MJ, Zhao YF, et al., 2009. Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology, 99(11):1237-1244.

[30]Lagonenko AL, Komardina VS, Nikolaichik YA, et al., 2008. First report of Erwinia amylovora fire blight in Belarus. J Phytopathol, 156(10):638-640.

[31]Lee JH, Ancona V, Zhao YF, 2018. Lon protease modulates virulence traits in Erwinia amylovora by direct monitoring of major regulators and indirectly through the Rcs and Gac-Csr regulatory systems. Mol Plant Pathol, 19(4):827-840.

[32]Lee JH, Ancona V, Chatnaparat T, et al., 2019. The RNA- binding protein CsrA controls virulence in Erwinia amylovora by regulating RelA, RcsB, and FlhD at the posttranscriptional level. Mol Plant Microbe Interact, 32(10):1448-1459.

[33]Liu XL, Fan YY, Zhang C, et al., 2019. Nuclear import of a secreted “Candidatus Liberibacter asiaticus” protein is temperature dependent and contributes to pathogenicity in Nicotiana benthamiana. Front Microbiol, 10:1684.

[34]Livak KJ, Schmittgen TD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT Method. Methods, 25(4):402-408.

[35]López MM, Roselló M, Llop P, et al., 2011. Erwinia piriflorinigrans sp. nov., a novel pathogen that causes necrosis of pear blossoms. Int J Syst Evol Microbiol, 61(3):561-567.

[36]Löwer M, Weydig C, Metzler D, et al., 2008. Prediction of extracellular proteases of the human pathogen Helicobacter pylori reveals proteolytic activity of the Hp1018/19 protein HtrA. PLoS ONE, 3(10):e3510.

[37]Malnoy M, Martens S, Norelli JL, et al., 2012. Fire blight: applied genomic insights of the pathogen and host. Annu Rev Phytopathol, 50:475-494.

[38]McCann HC, Guttman DS, 2008. Evolution of the type III secretion system and its effectors in plant-microbe interactions. New Phytol, 177(1):33-47.

[39]Nissinen RM, Ytterberg AJ, Bogdanove AJ, et al., 2007. Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol Plant Pathol, 8(1):55-67.

[40]Oh CS, Beer SV, 2005. Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett, 253(2):185-192.

[41]Oh CS, Martin GB, Beer SV, 2007. DspA/E, a type III effector of Erwinia amylovora, is required for early rapid growth in Nicotiana benthamiana and causes NbSGT1-dependent cell death. Mol Plant Pathol, 8(3):255-265.

[42]Pel MJC, van Dijken AJH, Bardoel BW, et al., 2014. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA. Mol Plant Microbe Interact, 27(7):603-610.

[43]Petersen TN, Brunak S, von Heijne G, et al., 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 8(10):785-786.

[44]Piqué N, Miñana-Galbis D, Merino S, et al., 2015. Virulence factors of Erwinia amylovora: a review. Int J Mol Sci, 16(6):12836-12854.

[45]Pletzer D, Weingart H, 2014. Characterization and regulation of the resistance-nodulation-cell division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora. BMC Microbiol, 14:185.

[46]Pletzer D, Stahl A, Oja AE, et al., 2015. Role of the cell envelope stress regulators BaeR and CpxR in control of RND-type multidrug efflux pumps and transcriptional cross talk with exopolysaccharide synthesis in Erwinia amylovora. Arch Microbiol, 197(6):761-772.

[47]Rawlings ND, Barrett AJ, Thomas PD, et al., 2018. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res, 46(D1):D624-D632.

[48]Schachterle JK, Sundin GW, 2019. The leucine-responsive regulatory protein Lrp participates in virulence regulation downstream of small RNA ArcZ in Erwinia amylovora. mBio, 10(3):e00757-19.

[49]Schröpfer S, Böttcher C, Wöhner T, et al., 2018. A single effector protein, AvrRpt2EA, from Erwinia amylovora can cause fire blight disease symptoms and induces a salicylic acid-dependent defense response. Mol Plant Microbe Interact, 31(11):1179-1191.

[50]Sebaihia M, Bocsanczy AM, Biehl BS, et al., 2010. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946. J Bacteriol, 192(7):2020-2021.

[51]Segers K, Anné J, 2011. Traffic jam at the bacterial Sec translocase: targeting the SecA nanomotor by small- molecule inhibitors. Chem Biol, 18(6):685-698.

[52]Smets D, Loos MS, Karamanou S, et al., 2019. Protein transport across the bacterial plasma membrane by the Sec pathway. Protein J, 38(3):262-273.

[53]Smits THM, Rezzonico F, Kamber T, et al., 2010. Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant Microbe Interact, 23(4):384-393.

[54]Stavrinides J, McCann HC, Guttman DS, 2008. Host-pathogen interplay and the evolution of bacterial effectors. Cell Microbiol, 10(2):285-292.

[55]Supuran CT, Scozzafava A, Mastrolorenzo A, 2001. Bacterial proteases: current therapeutic use and future prospects for the development of new antibiotics. Expert Opin Ther Pat, 11(2):221-259.

[56]Tang XY, Xiao YM, Zhou JM, 2006. Regulation of the type III secretion system in phytopathogenic bacteria. Mol Plant Microbe Interact, 19(11):1159-1166.

[57]Tian YL, Zhao YQ, Shi LY, et al., 2017. Type VI secretion systems of Erwinia amylovora contribute to bacterial competition, virulence, and exopolysaccharide production. Phytopathology, 107(6):654-661.

[58]Tsirigotaki A, de Geyter J, Šoštarić N, et al., 2017. Protein export through the bacterial Sec pathway. Nat Rev Microbiol, 15:21-36.

[59]Wu X, Lei L, Gong SQ, et al., 2011. The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol. BMC Microbiol, 11:87.

[60]Xia YJ, 2004. Proteases in pathogenesis and plant defence. Cell Microbiol, 6(10):905-913.

[61]Yorgey P, Rahme LG, Tan MW, et al., 2001. The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol Microbiol, 41(5):1063-1076.

[62]Zhang YX, Bak DD, Heid H, et al., 1999. Molecular characterization of a protease secreted by Erwinia amylovora. J Mol Biol, 289(5):1239-1251.

[63]Zhao YF, He SY, Sundin GW, 2006. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Mol Plant Microbe Interact, 19(6):644-654.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE