CLC number:
On-line Access: 2021-06-11
Received: 2020-10-24
Revision Accepted: 2021-01-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4512
Olga L. EVDOKIMOVA, Carla S. ALVES, Radenka M. KRSMANOVIĆ WHIFFEN, Zaida ORTEGA, Helena TOMÁS, João RODRIGUES. Cytocompatible cellulose nanofibers from invasive plant species Agave americana L. and Ricinus communis L.: a renewable green source of highly crystalline nanocellulose[J]. Journal of Zhejiang University Science B, 2021, 22(6): 450-461.
@article{title="Cytocompatible cellulose nanofibers from invasive plant species Agave americana L. and Ricinus communis L.: a renewable green source of highly crystalline nanocellulose",
author="Olga L. EVDOKIMOVA, Carla S. ALVES, Radenka M. KRSMANOVIĆ WHIFFEN, Zaida ORTEGA, Helena TOMÁS, João RODRIGUES",
journal="Journal of Zhejiang University Science B",
volume="22",
number="6",
pages="450-461",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2000683"
}
%0 Journal Article
%T Cytocompatible cellulose nanofibers from invasive plant species Agave americana L. and Ricinus communis L.: a renewable green source of highly crystalline nanocellulose
%A Olga L. EVDOKIMOVA
%A Carla S. ALVES
%A Radenka M. KRSMANOVIĆ WHIFFEN
%A Zaida ORTEGA
%A Helena TOMÁS
%A João RODRIGUES
%J Journal of Zhejiang University SCIENCE B
%V 22
%N 6
%P 450-461
%@ 1673-1581
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2000683
TY - JOUR
T1 - Cytocompatible cellulose nanofibers from invasive plant species Agave americana L. and Ricinus communis L.: a renewable green source of highly crystalline nanocellulose
A1 - Olga L. EVDOKIMOVA
A1 - Carla S. ALVES
A1 - Radenka M. KRSMANOVIĆ WHIFFEN
A1 - Zaida ORTEGA
A1 - Helena TOMÁS
A1 - João RODRIGUES
J0 - Journal of Zhejiang University Science B
VL - 22
IS - 6
SP - 450
EP - 461
%@ 1673-1581
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2000683
Abstract: In this study, the fibers of invasive species Agave americana L. and Ricinus communis L. were successfully used for the first time as new sources to produce cytocompatible and highly crystalline cellulose nanofibers. Cellulose nanofibers were obtained by two methods, based on either alkaline or acid hydrolysis. The morphology, chemical composition, and crystallinity of the obtained materials were characterized by scanning electron microscopy (SEM) together with energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The crystallinity indexes (CIs) of the cellulose nanofibers extracted from A. americana and R. communis were very high (94.1% and 92.7%, respectively). Biological studies evaluating the cytotoxic effects of the prepared cellulose nanofibers on human embryonic kidney 293T (HEK293T) cells were also performed. The nanofibers obtained using the two different extraction methods were all shown to be cytocompatible in the concentration range assayed (i.e., 0‒500µg/mL). Our results showed that the nanocellulose extracted from A. americana and R. communis fibers has high potential as a new renewable green source of highly crystalline cellulose-based cytocompatible nanomaterials for biomedical applications.
[1]AbrantesS, AmaralME, CostaAP, et al., 2007. Cynara cardunculus L. alkaline pulps: alternatives fibres for paper and paperboard production. Bioresour Technol, 98(15):2873-2878.
[2]AguirC, M'HenniMF, 2006. Experimental study on carboxymethylation of cellulose extracted from Posidonia oceanica. J Appl Polym Sci, 99(4):1808-1816.
[3]ÅhlénM, TummalaGK, MihranyanA, 2018. Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications. Int J Pharm, 536(1):73-81.
[4]BacakovaL, PajorovaJ, BacakovaM, et al., 2019. Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing. Nanomaterials (Basel), 9(2):164.
[5]BajpaiP, 2017. Pulp and Paper Industry. Elsevier, Amsterdam, p.15-25.
[6]BéakouA, NtengaR, LepetitJ, et al., 2008. Physico-chemical and microstructural characterization of “Rhectophyllum camerunense” plant fiber. Compos Part A: Appl Sci Manuf, 39(1):67-74.
[7]BettaiebF, KhiariR, DufresneA, et al., 2015a. Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr Polym, 123:99-104.
[8]BettaiebF, KhiariR, HassanML, et al., 2015b. Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica. Ind Crops Prod, 72:175-182.
[9]CharlesH, DukesJS, 2007. Impacts of invasive species on ecosystem services. In: Nentwig W (Ed.), Biological Invasions. Springer, Heidelberg, p.217-237.
[10]ChenYW, LeeHV, 2018. Revalorization of selected municipal solid wastes as new precursors of “green” nanocellulose via a novel one-pot isolation system: a source perspective. Int J Biol Macromol, 107:78-92.
[11]CrowlTA, CristTO, ParmenterRR, et al., 2008. The spread of invasive species and infectious disease as drivers of ecosystem change. Front Ecol Environ, 6(5):238-246.
[12]DasK, RayD, BandyopadhyayNR, et al., 2010. Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J Polym Environ, 18(3):355-363.
[13]FioreV, ScaliciT, VitaleG, et al., 2014. Static and dynamic mechanical properties of Arundo Donax fillers-epoxy composites. Mater Des, 57:456-464.
[14]FiserovaM, GigacJ, MajtnerovaA, et al., 2006. Evaluation of annual plants (Amaranthus caudatus L., Atriplex hortensis L., Helianthus tuberosus L.) for pulp production. Cellul Chem Technol, 40(6):405-412.
[15]GuiseC, FangueiroR, 2016. Biomedical applications of nanocellulose. In: Fangueiro R, Rana S (Eds.), Natural Fibres: Advances in Science and Technology Towards Industrial Applications. Springer, Dordrecht, p.155-169.
[16]GümüskayaE, UstaM, KirciH, 2003. The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym Degrad Stab, 81(3):559-564.
[17]HospodarovaV, SingovszkaE, StevulovaN, 2018. Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. Am J Anal Chem, 9(6):303-310.
[18]KargarzadehH, IoelovichM, AhmadI, et al., 2017. Methods for extraction of nanocellulose from various sources. In: Kargarzadeh H, Ahmad I, Thomas S, et al. (Eds.), Handbook of Nanocellulose and Cellulose Nanocomposites, Volume 1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p.1-49.
[19]KhiariR, MauretE, BelgacemMN, et al., 2011. Tunisian date palm rachis used as an alternative source of fibres for papermaking applications. BioResources, 6(1):265-281.
[20]LamE, MaleKB, ChongJH, et al., 2012. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol, 30(5):283-290.
[21]LangN, MerkelE, FuchsF, et al., 2015. Bacterial nanocellulose as a new patch material for closure of ventricular septal defects in a pig model. Eur J Cardio-Thorac Surg, 47(6):1013-1021.
[22]le MoigneN, NavardP, 2010. Dissolution mechanisms of wood cellulose fibres in NaOH-water. Cellulose, 17(1):31-45.
[23]LinN, DufresneA, 2014. Nanocellulose in biomedicine: current status and future prospect. Eur Polym J, 59:302-325.
[24]MaheswariCU, ReddyKO, MuzendaE, et al., 2012. Extraction and characterization of cellulose microfibrils from agricultural residue—Cocos nucifera L. Biomass Bioenergy, 46:555-563.
[25]MishraRK, SabuA, TiwariSK, 2018. Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J Saudi Chem Soc, 22(8):949-978.
[26]MohamedMA, SallehWNW, JaafarJ, et al., 2015. Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv, 5(38):29842-29849.
[27]MooneyHA, HobbsRJ, 2000. Invasive Species in a Changing World. Islands Press, p.65-73. https://islandpress.org/books/invasive-species-changing-world
[28]MotaungTE, LinganisoLZ, KumarR, et al., 2017. Agave and sisal fibre-reinforced polyfurfuryl alcohol composites. J Thermoplastic Compos Mater, 30(10):1323-1343.
[29]OrtegaZ, CastellanoJ, SuárezL, et al., 2019. Characterization of Agave americana L. plant as potential source of fibres for composites obtaining. SN Appl Sci, 1:987.
[30]OunAA, RhimJW, 2016. Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method. Mater Lett, 168:146-150.
[31]PereiraB, ArantesV, 2018. Nanocelluloses from sugarcane biomass. In: Chandel AK, Silveira MHL (Eds.), Advances in Sugarcane Biorefinery: Technologies, Commercialization, Policy Issues and Paradigm Shift for Bioethanol and By-Products. Elsevier Inc., Amsterdam, p.179-196.
[32]PhanthongP, ReubroycharoenP, HaoXG, et al., 2018. Nanocellulose: extraction and application. Carbon Res Convers, 1(1):32-43.
[33]PolettoM, OrnaghiHL, ZatteraAJ, 2014. Native cellulose: structure, characterization and thermal properties. Materials (Basel), 7(9):6105-6119.
[34]RambabuN, PanthapulakkalS, SainM, et al., 2016. Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind Crops Prod, 83:746-754.
[35]ReddyJP, RhimJW, 2014. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydr Polym, 110:480-488.
[36]ReesA, PowellLC, Chinga-CarrascoG, et al., 2015. 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. BioMed Res Int, 2015:925757.
[37]RidzuanMJM, MajidMSA, AfendiM, et al., 2016. Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Mater Des, 89:839-847.
[38]SairS, OushabiA, KammouniA, et al., 2017. Effect of surface modification on morphological, mechanical and thermal conductivity of hemp fiber: characterization of the interface of hemp‒polyurethane composite. Case Stud Therm Eng, 10:550-559.
[39]SandlerN, PreisM, 2016. Printed drug-delivery systems for improved patient treatment. Trends Pharmacol Sci, 37(12):1070-1080.
[40]SatyanarayanaKG, Flores-SahagunTHS, SantosLPD, et al., 2013. Characterization of blue agave bagasse fibers of Mexico. Compos Part A: Appl Sci Manuf, 45:153-161.
[41]AEOBSghaier, ChaabouniY, MsahliS, et al., 2012. Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind Crops Prod, 36(1):257-266.
[42]SunDY, OnyiantaAJ, O'RourkeD, et al., 2020. A process for deriving high quality cellulose nanofibrils from water hyacinth invasive species. Cellulose, 27(7):3727-3740.
[43]TheanderO, WesterlundEA, 1986. Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J Agric Food Chem, 34(2):330-336.
[44]TrifolJ, SillardC, PlackettD, et al., 2017. Chemically extracted nanocellulose from sisal fibres by a simple and industrially relevant process. Cellulose, 24(1):107-118.
[45]VinayakaDL, GunaV, MadhaviD, et al., 2017. Ricinus communis plant residues as a source for natural cellulose fibers potentially exploitable in polymer composites. Ind Crops Prod, 100:126-131.
[46]WangXJ, ChengF, LiuJ, et al., 2016. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomater, 46:286-298.
[47]XuWY, WangXJ, SandlerN, et al., 2018. Three-dimensional printing of wood-derived biopolymers: a review focused on biomedical applications. ACS Sustain Chem Eng, 6(5):5663-5680.
[48]YuDG, Branford-WhiteC, MaZH, et al., 2009. Novel drug delivery devices for providing linear release profiles fabricated by 3DP. Int J Pharm, 370(1-2):160-166.
Open peer comments: Debate/Discuss/Question/Opinion
<1>