Full Text:   <1332>

Summary:  <1405>

CLC number: 

On-line Access: 2022-04-22

Received: 2020-11-24

Revision Accepted: 2021-01-10

Crosschecked: 2022-04-22

Cited: 0

Clicked: 3148

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Faheem AHMAD

https://orcid.org/0000-0002-7450-0900

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2021 Vol.22 No.7 P.563-574

http://doi.org/10.1631/jzus.B2000746


New insights on the utilization of ultrasonicated mustard seed cake: chemical composition and antagonistic potential for root-knot nematode, Meloidogyne javanica


Author(s):  Hera NADEEM, Pieter MALAN, Amir KHAN, Mohd ASIF, Mansoor AHMAD SIDDIQUI, Simon TUHAFENI ANGOMBE, Faheem AHMAD

Affiliation(s):  Department of Botany, Aligarh Muslim University, Aligarh-202002, U.P., India; more

Corresponding email(s):   ahmad_nematol@yahoo.com

Key Words:  Plant-parasitic nematode, Plant by-product, Sono-extraction, Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), Natural compound, Nematode management


Hera NADEEM, Pieter MALAN, Amir KHAN, Mohd ASIF, Mansoor AHMAD SIDDIQUI, Simon TUHAFENI ANGOMBE, Faheem AHMAD. New insights on the utilization of ultrasonicated mustard seed cake: chemical composition and antagonistic potential for root-knot nematode, Meloidogyne javanica[J]. Journal of Zhejiang University Science B, 2021, 22(7): 563-574.

@article{title="New insights on the utilization of ultrasonicated mustard seed cake: chemical composition and antagonistic potential for root-knot nematode, Meloidogyne javanica",
author="Hera NADEEM, Pieter MALAN, Amir KHAN, Mohd ASIF, Mansoor AHMAD SIDDIQUI, Simon TUHAFENI ANGOMBE, Faheem AHMAD",
journal="Journal of Zhejiang University Science B",
volume="22",
number="7",
pages="563-574",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2000746"
}

%0 Journal Article
%T New insights on the utilization of ultrasonicated mustard seed cake: chemical composition and antagonistic potential for root-knot nematode, Meloidogyne javanica
%A Hera NADEEM
%A Pieter MALAN
%A Amir KHAN
%A Mohd ASIF
%A Mansoor AHMAD SIDDIQUI
%A Simon TUHAFENI ANGOMBE
%A Faheem AHMAD
%J Journal of Zhejiang University SCIENCE B
%V 22
%N 7
%P 563-574
%@ 1673-1581
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2000746

TY - JOUR
T1 - New insights on the utilization of ultrasonicated mustard seed cake: chemical composition and antagonistic potential for root-knot nematode, Meloidogyne javanica
A1 - Hera NADEEM
A1 - Pieter MALAN
A1 - Amir KHAN
A1 - Mohd ASIF
A1 - Mansoor AHMAD SIDDIQUI
A1 - Simon TUHAFENI ANGOMBE
A1 - Faheem AHMAD
J0 - Journal of Zhejiang University Science B
VL - 22
IS - 7
SP - 563
EP - 574
%@ 1673-1581
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2000746


Abstract: 
This study focused, for the first time, on the effect of ultrasonic features on the extraction efficiency of secondary metabolites in mustard seed cake (MSC). The nematostatic potential of sonicated seed cake was examined against the second-stage juveniles (J2s) of root-knot nematode, Meloidogyne javanica. The results show that a 35 ppm (parts per million) concentration of a sonicated extract (SE) sample of MSC caused 65% J2s mortality at 18 h exposure period in vitro. It also significantly suppressed the root-knot index (RKI=0.94) in tomato roots. The lethal concentration values for SE were 51.76, 29.79, and 13.34 ppm, respectively, at 6, 12, and 18 h of the exposure period, and the lethal concentration values for the non-sonicated extract (NSE) sample were 116.95, 76.38, and 55.59 ppm, respectively, at similar exposure time. Sinapine and gluconapin were identified as the major compounds in ultrasonic-assisted MSC. Because of the high extraction efficiency of metabolites in the SE, all treatments of SE were shown to be antagonistic to J2s. Thus, this study of ultrasonication activity-based profiling of MSC may help generate target-based compounds at a scale relevant to the control of disease caused by nematodes in economic crops.

利用超声波芥菜籽饼的新见解:化学成分和对根结线虫的拮抗潜力

目的:研究超声芥菜籽饼(MSC)对次生代谢产物提取效率的影响。
创新点:基于MSC超声活性分析的研究有助于规模生产经济作物中与控制线虫引起的疾病有关的目标化合物。
方法:在玻璃烧杯中用100 mL溶剂混合物制备MSC粉末(10 g),然后放入数字超声波浴中以获得超声提取物(SE)滤液,或将MSC混合物在带有磁力搅拌器的锥形烧瓶中搅拌以获得非超声提取物(NSE)滤液。这些获得的滤液用于扫描电子显微镜(SEM)成像、液相色谱电喷雾电离质谱(LC-ESI-MS)系统分析化学成分并评估对根结线虫的拮抗潜力。
结论:超声处理过的MSC对根结线虫(Java)的二期幼虫(J2s)具有抑瘤潜力,且显著抑制了番茄根的根结指数(RKI),值为0.94。在相似的暴露时间下,SE的致死浓度(LC50)值分别在6、12和18小时分别为51.76、29.79和13.34 ppm(10−6),NSE的LC50值分别为116.95、76.38和55.59 ppm。在MSC的SE中,芥子酸胆碱和葡萄糖芫菁芥素被确定为主要化合物。由于SE中代谢物的高提取效率,所有SE均显示出对J2s的拮抗作用。研究结果表明,在体外暴露18小时,浓度为35 ppm的MSC的SE样品引起了65%的J2s死亡率。

关键词:植物寄生线虫;植物副产品;声音提取;液相色谱电喷雾电离质谱(LC-ESI-MS);天然化合物;线虫管理

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AgerbirkN, OlsenCE, 2012. Glucosinolate structures in evolution. Phytochemistry, 77:16-45.

[2]AlseekhS, FernieAR, 2018. Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J, 94(6):933-942.

[3]CorralesM, ToepflS, ButzP, et al., 2008. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov Food Sci Emerg, 9(1):85-91.

[4]CorralesM, HanJH, TauscherB, 2009. Antimicrobial properties of grape seed extracts and their effectiveness after incorporation into pea starch films. Int J Food Sci Technol, 44(2):425-433.

[5]DahlinP, HallmannJ, 2020. New insights on the role of allyl isothiocyanate in controlling the root knot nematode, Meloidogyne hapla. Plants, 9(5):603.

[6]de CoratoU, PaneC, BrunoGL, et al., 2015. Co-products from a biofuel production chain in crop disease management: a review. Crop Prot, 68:12-26.

[7]de O AbrantesIM, de A SantosMSN, 1989. A technique for preparing perineal patterns of root-knot nematodes for scanning electron microscopy. J Nematol, 21(1):138-139.

[8]FEDIOL, 2020. The EU oil and protein meal industry, world production data for plant oils and fatty acids. http://www.fediol.eu

[9]FourieH, AhujaP, LammersJ, et al., 2016. Brassicacea-based management strategies as an alternative to combat nematode pests: a synopsis. Crop Prot, 80:21-41.

[10]HendersonDR, RigaE, RamirezRA, et al., 2009. Mustard biofumigation disrupts biological control by Steinernema spp. nematodes in the soil. Biol Control, 48(3):316-322.

[11]KhaliliF, DinaniST, 2018. Extraction of phenolic compounds from olive-waste cake using ultrasonic process. J Food Meas Charact, 12(2):974-981.

[12]KnorrD, FroehlingA, JaegerH, et al., 2011. Emerging technologies in food processing. Annu Rev Food Sci Technol, 2:203-235.

[13]KrugerDHM, FourieJC, MalanAP, 2013. Cover crops with biofumigation properties for the suppression of plant-parasitic nematodes: a review. South Afr J Enol Vitic, 34(2):287-295.

[14]MatthiessenJN, KirkegaardJA, 2006. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci, 25(3):235-265.

[15]NtalliNG, CaboniP, 2012. Botanical nematicides: a review. J Agric Food Chem, 60(40):9929-9940.

[16]PicóY, 2013. Ultrasound-assisted extraction for food and environmental samples. TrAC Trends Anal Chem, 43:84-99.

[17]PilliS, BhuniaP, YanS, et al., 2011. Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem, 18(1):1-18.

[18]PotterJW, OlthofTHA, 1993. Nematode pests of vegetable crops. In: Evans K, Trudgill DL, Webser JM (Eds.), Plant-Parasitic Nematodes in Temperate Agriculture. CAB International, Wallingford, UK, p.171-207.

[19]RahmanL, SomersT, 2005. Suppression of root knot nematode (Meloidogyne javanica) after incorporation of Indian mustard cv. Nemfix as green manure and seed meal in vineyards. Australas Plant Pathol, 34(1):77-83.

[20]RamachandranS, SinghSK, LarrocheC, et al., 2007. Oil cakes, and their biotechnological applications—a review. Biores Technol, 98(10):2000-2009.

[21]RincónB, BujalanceL, FermosoFG, et al., 2013. Biochemical methane potential of two-phase olive mill solid waste: influence of thermal pretreatment on the process kinetic. Biores Technol, 140:249-255.

[22]TangWZ, 2003. Physicochemical Treatment of Hazardous Wastes. CRC Press, Boca Raton, the US, p.439.

[23]TaylorAL, SasserJN, 1978. Biology, Identification and Control of Root-knot Nematodes (Meloidogyne Species). North Carolina State University, Raleigh, USA, p.111.

[24]TehSS, BirchEJ, 2014. Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrason Sonochem, 21(1):346-353.

[25]VagananMM, RaviI, NandakumarA, et al., 2014. Phenylpropanoid enzymes, phenolic polymers and metabolites as chemical defenses to infection of Pratylenchus coffeae in roots of resistant and susceptible bananas (Musa spp.). Indian J Exp Biol, 52:252-260.

[26]ValdesY, ViaeneN, MoensM, 2012. Effects of yellow mustard amendments on the soil nematode community in a potato field with focus on Globodera rostochiensis. Appl Soil Ecol, 59:39-47.

[27]WesemaelW, ViaeneN, MoensM, 2011. Root-knotnematodes (Meloidogyne spp.) in Europe. Nematology, 13(1):3-16.

[28]WhiteheadAG, 1997. Plant Nematode Control. CAB International, Wallingford, UK.

[29]WillisKJ, 2017. State of the World’s Plants 2017. Royal Botanic Gardens, Kew, London.

[30]YusafT, Al-JubooriRA, 2014. Alternative methods of microorganism disruption for agricultural applications. App Energy, 114:909-923.

[31]ZhouH, HuangYX, HoshiT, et al., 2005. Electrochemistry of sinapine and its detection in medicinal plants. Anal Bioanal Chem, 382(4):1196-1201.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE