Full Text:   <507>

Summary:  <37>

CLC number: 

On-line Access: 2025-06-25

Received: 2024-07-23

Revision Accepted: 2024-11-11

Crosschecked: 2025-06-25

Cited: 0

Clicked: 644

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shiyao HU

https://orcid.org/0000-0001-8043-9061

Yushen DU

https://orcid.org/0000-0002-8015-4207

Yiding CHEN

https://orcid.org/0000-0002-2263-6275

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.6 P.546-556

http://doi.org/10.1631/jzus.B2400381


New characteristics of cancer immunotherapy: trends in viral tumor immunotherapy with influenza virus-based approaches


Author(s):  Shiyao HU, Yiqi CAI, Yong SHEN, Yingkuan SHAO, Yushen DU, Yiding CHEN

Affiliation(s):  Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; more

Corresponding email(s):   ydchen@zju.edu.cn, lilyduyushen@zju.edu.cn

Key Words:  Oncolytic virus, Influenza A virus, Antitumor, Reverse genetic technology, Vaccine, Viral immunotherapy


Shiyao HU, Yiqi CAI, Yong SHEN, Yingkuan SHAO, Yushen DU, Yiding CHEN. New characteristics of cancer immunotherapy: trends in viral tumor immunotherapy with influenza virus-based approaches[J]. Journal of Zhejiang University Science B, 2025, 26(6): 546-556.

@article{title="New characteristics of cancer immunotherapy: trends in viral tumor immunotherapy with influenza virus-based approaches",
author="Shiyao HU, Yiqi CAI, Yong SHEN, Yingkuan SHAO, Yushen DU, Yiding CHEN",
journal="Journal of Zhejiang University Science B",
volume="26",
number="6",
pages="546-556",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2400381"
}

%0 Journal Article
%T New characteristics of cancer immunotherapy: trends in viral tumor immunotherapy with influenza virus-based approaches
%A Shiyao HU
%A Yiqi CAI
%A Yong SHEN
%A Yingkuan SHAO
%A Yushen DU
%A Yiding CHEN
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 6
%P 546-556
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2400381

TY - JOUR
T1 - New characteristics of cancer immunotherapy: trends in viral tumor immunotherapy with influenza virus-based approaches
A1 - Shiyao HU
A1 - Yiqi CAI
A1 - Yong SHEN
A1 - Yingkuan SHAO
A1 - Yushen DU
A1 - Yiding CHEN
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 6
SP - 546
EP - 556
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2400381


Abstract: 
Immunomodulatory cancer therapy is witnessing the rise of viral immunotherapy. The oncolytic influenza A virus, although promising in preclinical investigations, remains to be implemented in clinical practice. Recent progress in genetic engineering, coupled with experiential insights, offers opportunities to enhance the therapeutic efficacy of the influenza A virus. This review explores the use of the influenza virus, its attenuated forms, and associated vaccines in cancer immunotherapy, highlighting their respective advantages and challenges. We further elucidate methods for engineering influenza viruses and innovative approaches to augment them with cytokines or immune checkpoint inhibitors, aiming to maximize their clinical impact. Our goal is to provide insights essential for refining influenza A virus-based viral tumor immunotherapies.

肿瘤免疫治疗的新特点:基于流感病毒的病毒肿瘤免疫治疗的发展趋势

胡世瑶1,3,蔡依琪2,沈泳1,3,邵营宽1,3,杜雨棽3,陈益定1,3
1浙江大学医学院附属第二医院乳腺外科,中国杭州市,310009
2浙江大学生命科学学院,中国杭州市,310058
3浙江大学医学院附属第二医院肿瘤研究所(教育部肿瘤预防与干预重点实验室),中国杭州市,310009
摘要:近年来,病毒免疫疗法作为癌症免疫调节治疗的新兴领域备受关注。尽管甲型流感溶瘤病毒在临床前研究中展现出显著抗肿瘤潜力,但其临床转化仍面临诸多挑战。随着基因编辑技术的突破性进展与实验经验的积累,研究者们已着手通过多维度策略提升该病毒的治疗效能。本文系统地综述了甲型流感病毒及其减毒株与相关疫苗在肿瘤免疫治疗中的应用,并重点剖析了其独特优势与现存挑战。同时,我们深入探讨病毒工程化改造的核心技术,阐述其与细胞因子和免疫检查点抑制剂等治疗模块的协同增效机制,以期为突破现有临床疗效瓶颈提供新思路。通过整合前沿研究成果,本文旨在为优化基于甲型流感病毒的肿瘤免疫疗法提供新策略。

关键词:溶瘤病毒;甲型流感病毒;抗肿瘤;反向基因技术;疫苗;病毒免疫治疗

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AlhaskawiA, SHAEzzi, DongY, et al., 2024. Recent advancements in the diagnosis and treatment of acral melanoma. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 25(2):106-122.

[2]Atkin-SmithGK, DuanMB, ChenWS, et al., 2018. The induction and consequences of Influenza A virus-induced cell death. Cell Death Dis, 9(10):1002.

[3]BergmannM, RomirerI, SachetM, et al., 2001. A genetically engineered influenza A virus with ras-dependent oncolytic properties. Cancer Res, 61(22):8188-8193.

[4]BlakeZ, MarksDK, GartrellRD, et al., 2018. Complete intracranial response to talimogene laherparepvec (T-Vec), pembrolizumab and whole brain radiotherapy in a patient with melanoma brain metastases refractory to dual checkpoint-inhibition. J Immunother Cancer, 6(1):25.

[5]BommareddyPK, ShettigarM, KaufmanHL, 2018. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol, 18(8):498-513.

[6]BouvierNM, PaleseP, 2008. The biology of influenza viruses. Vaccine, 26:D49-D53.

[7]CastrucciMR, BilselP, KawaokaY, 1992. Attenuation of influenza A virus by insertion of a foreign epitope into the neuraminidase. J Virol, 66(8):4647-4653.

[8]ChaurasiyaS, FongY, WarnerSG, 2021. Oncolytic virotherapy for cancer: clinical experience. Biomedicines, 9(4):419.

[9]ChenWS, CalvoPA, MalideD, et al., 2001. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med, 7(12):1306-1312.

[10]ColmanPM, VargheseJN, LaverWG, 1983. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature, 303(5912):41-44.

[11]DaiPH, WangWY, YangN, et al., 2017. Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells. Sci Immunol, 2(11):eaal1713.

[12]DavolaME, MossmanKL, 2019. Oncolytic viruses: how “lytic” must they be for therapeutic efficacy? Oncoimmunology, 8(6):e1581528.

[13]de GraafJF, de VorL, FouchierRAM, et al., 2018. Armed oncolytic viruses: a kick-start for anti-tumor immunity. Cytokine Growth Factor Rev, 41:28-39.

[14]de SilvaN, AtkinsH, KirnDH, et al., 2010. Double trouble for tumours: exploiting the tumour microenvironment to enhance anticancer effect of oncolytic viruses. Cytokine Growth Factor Rev, 21(2-3):135-141.

[15]DuYS, XinL, ShiY, et al., 2018. Genome-wide identification of interferon-sensitive mutations enables influenza vaccine design. Science, 359(6373):290-296.

[16]EffersonCL, SchickliJ, KoBK, et al., 2003. Activation of tumor antigen-specific cytotoxic T lymphocytes (CTLs) by human dendritic cells infected with an attenuated influenza A virus expressing a CTL epitope derived from the HER-2/neu proto-oncogene. J Virol, 77(13):7411-7424.

[17]EgorovA, BrandtS, SereinigS, et al., 1998. Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. J Virol, 72(8):6437-6441.

[18]EisfeldAJ, NeumannG, KawaokaY, 2015. At the centre: influenza A virus ribonucleoproteins. Nat Rev Microbiol, 13(1):28-41.

[19]FerhadianD, ContrantM, Printz-SchweigertA, et al., 2018. Structural and functional motifs in influenza virus RNAs. Front Microbiol, 9:559.

[20]FodorE, DevenishL, EngelhardtOG, et al., 1999. Rescue of influenza A virus from recombinant DNA. J Virol, 73(11):9679-9682.

[21]FrancisciD, LabiancaR, RoilaF, 2010. Prevention and treatment of pandemic influenza in cancer patients. Ann Oncol, 21(12):2301-2303.

[22]FujiiK, FujiiY, NodaT, et al., 2005. Importance of both the coding and the segment-specific noncoding regions of the influenza A virus NS segment for its efficient incorporation into virions. J Virol, 79(6):3766-3774.

[23]FujiiY, GotoH, WatanabeT, et al., 2003. Selective incorporation of influenza virus RNA segments into virions. Proc Natl Acad Sci USA, 100(4):2002-2007.

[24]García-SastreA, EgorovA, MatassovD, et al., 1998. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology, 252(2):324-330.

[25]GögenurM, BalseviciusL, BulutM, et al., 2023. Neoadjuvant intratumoral influenza vaccine treatment in patients with proficient mismatch repair colorectal cancer leads to increased tumor infiltration of CD8+ T cells and upregulation of PD-L1: a phase 1/2 clinical trial. J Immunother Cancer, 11(5):e006774.

[26]HamiltonJR, VijayakumarG, PaleseP, 2018. A recombinant antibody-expressing influenza virus delays tumor growth in a mouse model. Cell Rep, 22(1):1-7.

[27]HaseleyA, Alvarez-BreckenridgeC, ChaudhuryAR, et al., 2009. Advances in oncolytic virus therapy for glioma. Recent Pat CNS Drug Discov, 4(1):1-13.

[28]HockK, LaengleJ, KuznetsovaI, et al., 2017. Oncolytic influenza A virus expressing interleukin-15 decreases tumor growth in vivo. Surgery, 161(3):735-746.

[29]HoffmannE, NeumannG, KawaokaY, et al., 2000. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci USA, 97(11):6108-6113.

[30]JakobC, Paul-StansilausR, SchwemmleM, et al., 2022. The influenza A virus genome packaging network-complex, flexible and yet unsolved. Nucleic Acids Res, 50(16):9023-9038.

[31]JiDZ, ZhangYJ, SunJQ, et al., 2024. An engineered influenza virus to deliver antigens for lung cancer vaccination. Nat Biotechnol, 42(3):518-528.

[32]JohnsonDB, PuzanovI, KelleyMC, 2015. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy, 7(6):611-619.

[33]KabiljoJ, LaengleJ, BergmannM, 2020. From threat to cure: understanding of virus-induced cell death leads to highly immunogenic oncolytic influenza viruses. Cell Death Discov, 6:48.

[34]KasloffSB, PizzutoMS, Silic-BenussiM, et al., 2014. Oncolytic activity of avian influenza virus in human pancreatic ductal adenocarcinoma cell lines. J Virol, 88(16):9321-9334.

[35]KaufmanHL, KohlhappFJ, ZlozaA, 2015. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov, 14(9):642-662.

[36]KellyE, RussellSJ, 2007. History of oncolytic viruses: genesis to genetic engineering. Mol Ther, 15(4):651-659.

[37]KumlinU, OlofssonS, DimockK, et al., 2008. Sialic acid tissue distribution and influenza virus tropism. Influenza Other Respir Viruses, 2(5):147-154.

[38]KuznetsovaI, ShuryginaAP, WolfB, et al., 2014. Adaptive mutation in nuclear export protein allows stable transgene expression in a chimaeric influenza A virus vector. J Gen Virol, 95(2):337-349.

[39]KuznetsovaI, ArnoldT, AschacherT, et al., 2017. Targeting an oncolytic influenza A virus to tumor tissue by elastase. Mol Ther Oncolytics, 7:37-44.

[40]LamotteLA, TafforeauL, 2021. How influenza A virus NS1 deals with the ubiquitin system to evade innate immunity. Viruses, 13(11):2309.

[41]LeiGL, LiBF, YangH, et al., 2022. Therapeutic efficacy of an oncolytic influenza virus carrying an antibody against programmed cell death 1 in hepatocellular carcinoma. Hum Gene Ther, 33(5-6):309-317.

[42]LiZQ, ZhongLP, HeJ, et al., 2021. Development and application of reverse genetic technology for the influenza virus. Virus Genes, 57(2):151-163.

[43]LiangM, 2018. Oncorine, the world first oncolytic virus medicine and its update in China. Curr Cancer Drug Targets, 18(2):171-176.

[44]LiuC, AirGM, 1993. Selection and characterization of a neuraminidase-minus mutant of influenza virus and its rescue by cloned neuraminidase genes. Virology, 194(1):403-407.

[45]MardiA, ShirokovaAV, MohammedRN, et al., 2022. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; combination of oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int, 22:168.

[46]MartinK, HeleniustA, 1991. Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell, 67(1):117-130.

[47]MasemannD, MeissnerR, SchiedT, et al., 2021. Synergistic anti-tumor efficacy of oncolytic influenza viruses and B7-H3 immune-checkpoint inhibitors against IC-resistant lung cancers. Oncoimmunology, 10(1):e1885778.

[48]MiyakeY, KeuschJJ, DecampsL, et al., 2019. Influenza virus uses transportin 1 for vRNP debundling during cell entry. Nat Microbiol, 4(4):578-586.

[49]MorrisAK, WangZ, IveyAL, et al., 2020. Cellular mRNA export factor UAP56 recognizes nucleic acid binding site of influenza virus NP protein. Biochem Biophys Res Commun, 525(2):259-264.

[50]NeumannG, WatanabeT, ItoH, et al., 1999. Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA, 96(16):9345-9350.

[51]NeumannG, FujiiK, KinoY, et al., 2005. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc Natl Acad Sci USA, 102(46):16825-16829.

[52]NewmanJH, ChessonCB, HerzogNL, et al., 2020. Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc Natl Acad Sci USA, 117(2):1119-1128.

[53]PalaniveluL, LiuCH, LinLT, 2023. Immunogenic cell death: the cornerstone of oncolytic viro-immunotherapy. Front Immunol, 13:1038226.

[54]PedrazzoliP, BaldantiF, DonatelliI, et al., 2014. Vaccination for seasonal influenza in patients with cancer: recommendations of the Italian Society of Medical Oncology (AIOM). Ann Oncol, 25(6):1243-1247.

[55]PollyeaDA, BrownJMY, HorningSJ, 2010. Utility of influenza vaccination for oncology patients. J Clin Oncol, 28(14):2481-2490.

[56]RajaJ, LudwigJM, GettingerSN, et al., 2018. Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer, 6(1):140.

[57]RasaA, AlbertsP, 2023. Oncolytic virus preclinical toxicology studies. J Appl Toxicol, 43(5):620-648.

[58]RobbNC, SmithM, VreedeFT, et al., 2009. NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome. J Gen Virol, 90(6):1398-1407.

[59]Schultz-CherryS, HinshawVS, 1996. Influenza virus neuraminidase activates latent transforming growth factor beta. J Virol, 70(12):8624-8629.

[60]ShalhoutSZ, MillerDM, EmerickKS, et al., 2023. Therapy with oncolytic viruses: progress and challenges. Nat Rev Clin Oncol, 20(3):160-177.

[61]SitnikS, MasemannD, Leite DantasR, et al., 2020. PD-1 IC inhibition synergistically improves influenza A virus-mediated oncolysis of metastatic pulmonary melanoma. Mol Ther Oncolytics, 17:190-204.

[62]StegmannT, 2000. Membrane fusion mechanisms: the influenza hemagglutinin paradigm and its implications for intracellular fusion. Traffic, 1(8):598-604.

[63]SuWC, YuWY, HuangSH, et al., 2018. Ubiquitination of the cytoplasmic domain of influenza A virus M2 protein is crucial for production of infectious virus particles. J Virol, 92(4):e01972-17.

[64]SuiJ, SheehanJ, HwangWC, et al., 2011. Wide prevalence of heterosubtypic broadly neutralizing human anti-influenza A antibodies. Clin Infect Dis, 52(8):1003-1009.

[65]SunF, XuY, DengZY, et al., 2023. A recombinant oncolytic influenza virus expressing a PD-L1 antibody induces CD8+ T-cell activation via the cGas-STING pathway in mice with hepatocellular carcinoma. Int Immunopharmacol, 120:110323.

[66]TianYM, XieDY, YangL, 2022. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Sig Transduct Target Ther, 7:117.

[67]TripathiS, BatraJ, CaoW, et al., 2013. Influenza A virus nucleoprotein induces apoptosis in human airway epithelial cells: implications of a novel interaction between nucleoprotein and host protein clusterin. Cell Death Dis, 4(3):e562.

[68]Vähä-KoskelaMJV, HeikkiläJE, HinkkanenAE, 2007. Oncolytic viruses in cancer therapy. Cancer Lett, 254(2):178-216.

[69]van RikxoortM, MichaelisM, WolschekM, et al., 2012. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame. PLoS ONE, 7(5):e36506.

[70]WangT, ZhangJJ, WangYL, et al., 2023. Influenza-trained mucosal-resident alveolar macrophages confer long-term antitumor immunity in the lungs. Nat Immunol, 24(3):423-438.

[71]WatanabeT, WatanabeS, NodaT, et al., 2003. Exploitation of nucleic acid packaging signals to generate a novel influenza virus-based vector stably expressing two foreign genes. J Virol, 77(19):10575-10583.

[72]YangH, LeiGL, SunF, et al., 2022. Oncolytic activity of a chimeric influenza A virus carrying a human CTLA4 antibody in hepatocellular carcinoma. Front Oncol, 12:875525.

[73]YangPH, SunF, WangRL, et al., 2019. Oncolytic activity of a novel influenza A virus carrying granulocyte-macrophage colony-stimulating factor in hepatocellular carcinoma. Hum Gene Ther, 30(3):330-338.

[74]ZengS, XingS, ZhangY, et al., 2024. Nano-bacillus calmette-guerin immunotherapies for improved bladder cancer treatment. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 25(7):557-567.

[75]ZhangXM, KongW, AshrafS, et al., 2009. A one-plasmid system to generate influenza virus in cultured chicken cells for potential use in influenza vaccine. J Virol, 83(18):9296-9303.

[76]ZhengH, PaleseP, García-SastreA, 2000. Antitumor properties of influenza virus vectors. Cancer Res, 60(24):6972-6976.

[77]ZhirnovOP, KlenkHD, 2013. Influenza A virus proteins NS1 and hemagglutinin along with M2 are involved in stimulation of autophagy in infected cells. J Virol, 87(24):13107-13114.

[78]ZhuZ, McGrayAJR, JiangWJ, et al., 2022. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer, 21:196.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE