CLC number: S432
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-06-22
Cited: 11
Clicked: 6019
Jian-xiang Wu, Qiang Wang, Huan Liu, Ya-juan Qian, Yan Xie, Xue-ping Zhou. Monoclonal antibody-based serological methods for maize chlorotic mottle virus detection in China[J]. Journal of Zhejiang University Science B, 2013, 14(7): 555-562.
@article{title="Monoclonal antibody-based serological methods for maize chlorotic mottle virus detection in China",
author="Jian-xiang Wu, Qiang Wang, Huan Liu, Ya-juan Qian, Yan Xie, Xue-ping Zhou",
journal="Journal of Zhejiang University Science B",
volume="14",
number="7",
pages="555-562",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200275"
}
%0 Journal Article
%T Monoclonal antibody-based serological methods for maize chlorotic mottle virus detection in China
%A Jian-xiang Wu
%A Qiang Wang
%A Huan Liu
%A Ya-juan Qian
%A Yan Xie
%A Xue-ping Zhou
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 7
%P 555-562
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200275
TY - JOUR
T1 - Monoclonal antibody-based serological methods for maize chlorotic mottle virus detection in China
A1 - Jian-xiang Wu
A1 - Qiang Wang
A1 - Huan Liu
A1 - Ya-juan Qian
A1 - Yan Xie
A1 - Xue-ping Zhou
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 7
SP - 555
EP - 562
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200275
Abstract: maize chlorotic mottle virus (MCMV) infects maize plants and causes significant losses in corn production worldwide. In this study, purified MCMV particles were used as the immunogen to produce monoclonal antibodies (MAbs) and polyclonal antibodies (PAbs). Four murine MAbs (4B8, 8C11, 6F4, and 9G1) against MCMV were obtained through the hybridoma technology. The triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA), dot-immunobinding assay (DIBA), and immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) using the MAb 4B8 were then developed for sensitive, specific, and rapid detection of MCMV in fields. MCMV could be detected in infected leaf crude extracts at dilutions of 1:327680, 1:64000, and 1:3276800 (w/v, g/ml) by TAS-ELISA, DIBA, and IC-RT-PCR, respectively. One hundred and sixty-one maize field samples showing virus-like symptoms and sixty-nine symptomless maize field samples from ten different provinces of China were collected and screened for the presence of MCMV using the established serological methods. A phylogenetic tree was constructed based on the full length CP genes and Chinese MCMV isolates formed one branch with Thailand isolates. The detection results demonstrated that MCMV is one of most prevalent viruses infecting maize in the Yunnan and Sichuan provinces of China.
[1]Carrera-Martínez, H., Losoya-Saldaña, H., Mendoza-Zamora, C., Alvizo-Villasana, H., 1989. Inmunoabsorción enzimática (ELISA) en la identificación y distribución del virus moteado clorótico del maíz (VMCM) en el estado de México. Rev. Mex. Fitopatol., 7:20-25 (in Mexican Spanish).
[2]Castillo, J., Hebert, T., 1974. Nueva enfermedad virosa afectando al maiz en el Peru. Fitopatologia, 9(2):79-84 (in Spanish).
[3]Fang, S., Yu, J., Feng, J., Han, C., Li, D., Liu, Y., 2001. Identification of rice black-streaked dwarf Fijivirus in maize with rough dwarf disease in China. Arch. Virol., 146(1):167-170.
[4]Goldberg, K.B., Brakke, M.K., 1987. Concentration of maize chlorotic mottle virus increased in mixed infections with maize dwarf mosaic virus, strain B. Phytopathology, 77(2):162-167.
[5]Jensen, S., Wysong, D., Ball, E., Higley, P., 1991. Seed transmission of maize chlorotic mottle virus. Plant Dis., 75(5):497-498.
[6]Jiang, J., Zhou, X., 2002. Maize dwarf mosaic disease in different regions of China is caused by sugarcane mosaic virus. Arch.Virol., 147(12):2437-2443.
[7]King, A.M.Q., Lefkowitz, E., Adams, M.J., Carstens, E.B., 2011. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego, CA, Vol 9, p.256-267.
[8]Lommel, S., Kendall, T., Siu, N., Nutter, R., 1991a. Characterization of maize chlorotic mottle virus. Phytopathology, 81(8):819-823.
[9]Lommel, S., Kendall, T., Xiong, Z., Nutter, R., 1991b. Identification of the maize chlorotic mottle virus capsid protein cistron and characterization of its subgenomic messenger RNA. Virology, 181(1):382-385.
[10]Morales, F., Arroyave, J., Castillo, J., Leon, C., 1999. Cytopathology of maize chlorotic mottle virus in Zea mays L. Maydica, 44(3):231-235.
[11]Nault, L., Styer, W., Coffey, M., Gordon, D., Negi, L., Niblett, C., 1978. Transmission of maize chlorotic mottle virus by chrysomelid beetles. Phytopathology, 68(7):1071-1074.
[12]Nault, L.R., Gordon, D.T., Loayza, J.C., 1981. Maize virus and mycoplasma diseases in Peru. Trop. Pest Manage., 27(3):363-369.
[13]Niblett, C., Clafin, L., 1978. Corn lethal necrosis, a new virus disease of corn in Kansas. Plant Dis. Rep., 62:15-19.
[14]Nutter, R.C., Scheets, K., Panganiban, L., Lommel, S., 1989. The complete nucleotide sequence of the maize chlorotic mottle virus genome. Nucleic Acids Res., 17(8):3163-3177.
[15]Scheets, K., 1998. Maize chlorotic mottle machlomovirus and wheat streak mosaic rymovirus concentrations increase in the synergistic disease corn lethal necrosis. Virology, 242(1):28-38.
[16]Shang, H., Xie, Y., Zhou, X., Qian, Y., Wu, J., 2011. Monoclonal antibody-based serological methods for detection of cucumber green mottle mosaic virus. Virol. J., 8(1):228-236.
[17]Stenger, D.C., French, R., 2008. Complete nucleotide sequence of a maize chlorotic mottle virus isolate from Nebraska. Arch. Virol., 153(5):995-997.
[18]Stenger, D.C., Young, B.A., Qu, F., Morris, T.J., French, R., 2007. Wheat streak mosaic virus lacking helper component-proteinase is competent to produce disease synergism in double infections with maize chlorotic mottle virus. Phytopathology, 97(10):1213-1221.
[19]Uyemoto, J., 1983. Biology and control of maize chlorotic mottle virus. Plant Dis., 67(1):7-10.
[20]Uyemoto, J., Bockelman, D., Claflin, L., 1980. Severe outbreak of corn lethal necrosis disease in Kansas. Plant Dis., 64(1):99-100.
[21]Uyemoto, J., Claflin, L., Wilson, D., Raney, R., 1981. Maize chlorotic mottle and maize dwarf mosaic viruses: effect of single and double inoculations on symptomatology and yield. Plant Dis., 65(1):39-40.
[22]Wu, J., Yu, L., Li, L., Hu, J., Zhou, J., Zhou, X., 2007. Oral immunization with transgenic rice seeds expressing vp2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnol. J., 5(5):570-578.
[23]Wu, J., Yu, C., Yang, C., Zhou, X., 2009. Monoclonal antibodies against the recombinant nucleocapsid protein of tomato spotted wilt virus and its application in virus detection. J. Phytopathol., 157(6):344-349.
[24]Wu, J., Meng, C., Shang, H., Rong, S., Zhang, C., Hong, J., Zhou, X., 2011. Monoclonal antibody-based triple antibody sandwich-enzyme-linked immunosorbent assay and immunocapture reverse transcription-polymerase chain reaction for odontoglossum ringspot virus detection. J. Virol. Methods, 171(1):40-45.
[25]Xie, L., Zhang, J., Wang, Q., Meng, C., Hong, J., Zhou, X., 2011. Characterization of maize chlorotic mottle virus associated with maize lethal necrosis disease in China. J. Phytopathol., 159(3):191-193.
[26]Yin, X., Xu, F., Zheng, F., Li, X., Liu, B., Zhang, C., 2011. Molecular characterization of segments s7 to s10 of a southern rice black-streaked dwarf virus isolate from maize in northern China. Virol. Sin., 26(1):47-53.
[27]Yu, C., Wu, J., Zhou, X., 2005. Detection and subgrouping of cucumber mosaic virus isolates by TAS-ELISA and immunocapture RT-PCR. J. Virol. Methods, 123(2):155-161.
[28]Zhang, Y., Zhao, W., Li, M., Chen, H., Zhu, S., Fan, Z., 2011. Real-time Taqman RT-PCR for detection of maize chlorotic mottle virus in maize seeds. J. Virol. Methods, 171(1):292-294.
[29]Zhou, G.H., Wen, J.J., Cai, D.J., Li, P., Xu, D.L., Zhang, S.G., 2008. Southern rice black-streaked dwarf virus: a new proposed Fijivirus species in the family reoviridae. Chin. Sci. Bull., 53(23):3677-3685.
Open peer comments: Debate/Discuss/Question/Opinion
<1>