Full Text:   <1086>

Summary:  <1136>

CLC number: S41-30

On-line Access: 2020-10-12

Received: 2020-05-17

Revision Accepted: 2020-07-30

Crosschecked: 2020-09-08

Cited: 0

Clicked: 1870

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wan-qin He

https://orcid.org/0000-0002-3750-3467

Jian-xiang Wu

https://orcid.org/0000-0002-7611-7833

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2020 Vol.21 No.10 P.811-822

http://doi.org/10.1631/jzus.B2000255


Highly sensitive serological approaches for Pepino mosaic virus detection


Author(s):  Wan-qin He, Jia-yu Wu, Yi-yi Ren, Xue-ping Zhou, Song-bai Zhang, Ya-juan Qian, Fang-fang Li, Jian-xiang Wu

Affiliation(s):  State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   ffli@ippcaas.cn, wujx@zju.edu.cn

Key Words:  Pepino mosaic virus, Monoclonal antibody, Serological method, Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), Dot-ELISA, Tissue print-ELISA


Wan-qin He, Jia-yu Wu, Yi-yi Ren, Xue-ping Zhou, Song-bai Zhang, Ya-juan Qian, Fang-fang Li, Jian-xiang Wu. Highly sensitive serological approaches for Pepino mosaic virus detection[J]. Journal of Zhejiang University Science B, 2020, 21(10): 811-822.

@article{title="Highly sensitive serological approaches for Pepino mosaic virus detection",
author="Wan-qin He, Jia-yu Wu, Yi-yi Ren, Xue-ping Zhou, Song-bai Zhang, Ya-juan Qian, Fang-fang Li, Jian-xiang Wu",
journal="Journal of Zhejiang University Science B",
volume="21",
number="10",
pages="811-822",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2000255"
}

%0 Journal Article
%T Highly sensitive serological approaches for Pepino mosaic virus detection
%A Wan-qin He
%A Jia-yu Wu
%A Yi-yi Ren
%A Xue-ping Zhou
%A Song-bai Zhang
%A Ya-juan Qian
%A Fang-fang Li
%A Jian-xiang Wu
%J Journal of Zhejiang University SCIENCE B
%V 21
%N 10
%P 811-822
%@ 1673-1581
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2000255

TY - JOUR
T1 - Highly sensitive serological approaches for Pepino mosaic virus detection
A1 - Wan-qin He
A1 - Jia-yu Wu
A1 - Yi-yi Ren
A1 - Xue-ping Zhou
A1 - Song-bai Zhang
A1 - Ya-juan Qian
A1 - Fang-fang Li
A1 - Jian-xiang Wu
J0 - Journal of Zhejiang University Science B
VL - 21
IS - 10
SP - 811
EP - 822
%@ 1673-1581
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2000255


Abstract: 
Pepino mosaic virus (PepMV) causes severe disease in tomato and other Solanaceous crops around globe. To effectively study and manage this viral disease, researchers need new, sensitive, and high-throughput approaches for viral detection. In this study, we purified PepMV particles from the infected Nicotiana benthamiana plants and used virions to immunize BALB/c mice to prepare hybridomas secreting anti-PepMV monoclonal antibodies (mAbs). A panel of highly specific and sensitive murine mAbs (15B2, 8H6, 23D11, 20D9, 3A6, and 8E3) could be produced through cell fusion, antibody selection, and cell cloning. Using the mAbs as the detection antibodies, we established double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), dot-ELISA, and tissue print-ELISA for detecting PepMV infection in tomato plants. Resulting data on sensitivity analysis assays showed that both DAS-ELISA and dot-ELISA can efficiently monitor the virus in PepMV-infected tissue crude extracts when diluted at 1:1 310 720 and 1:20 480 (weight/volume ratio (w/v), g/mL), respectively. Among the three methods developed, the tissue print-ELISA was found to be the most practical detection technique. Survey results from field samples by the established serological approaches were verified by reverse transcription polymerase chain reaction (RT-PCR) and DNA sequencing, demonstrating all three serological methods are reliable and effective for monitoring PepMV. Anti-PepMV mAbs and the newly developed DAS-ELISA, dot-ELISA, and tissue print-ELISA can benefit PepMV detection and field epidemiological study, and management of this viral disease, which is already widespread in tomato plants in Yunnan Province of China.

凤果花叶病毒高灵敏度血清学检测技术

目的:建立基于单克隆抗体的检测番茄等植物中凤果花叶病毒(PepMV)的血清学方法,为PepMV的田间调查和诊断及其科学防控提供快速实用的检测技术.
创新点:首次制备了抗PepMV的高度特异和灵敏的单克隆抗体,并利用制备的单抗建立了3种能特异且灵敏地检测PepMV的血清学方法.
方法:以差速离心方法提纯的PepMV粒子作为免疫原免疫BALB/c小鼠,通过杂交瘤技术获得了能稳定传代并分泌PepMV单克隆抗体的杂交瘤细胞株;杂交瘤细胞注射到小鼠腹腔获得单克隆抗体腹水,并以制备单抗为核心,根据血清学原理建立检测植物中PepMV的双抗夹心酶联免疫吸附试验(DAS-ELISA)、斑点酶联免疫吸附试验(Dot-ELISA)和组织印迹酶联免疫吸附试验(Tissue print-ELISA)三种血清学检测方法;利用田间番茄样品分析建立的血清学方法检测PepMV的有效性.
结论:利用杂交瘤技术获得了6株能分泌高度特异灵敏PepMV单克隆抗体的杂交瘤细胞株,以分泌的单抗为核心建立了检测植株中PepMV的DAS-ELISA、Dot-ELISA和Tissue print-ELISA三种高度灵敏的血清学新技术.三种建立的血清学技术检测感染PepMV的番茄植株均呈强阳性反应,而检测健康番茄及感染其他5种植物病毒的植株呈阴性反应,且DAS-ELISA和Dot-ELISA血清学技术检测番茄病叶粗提液的灵敏度分别达到1:1 310 720和1:20 480倍稀释(质量体积比,g/mL).田间样品检测结果发现,建立的血清学技术的检测结果与反转录聚合酶链反应(RT-PCR)的检测结果一致,表明建立的血清学方法可有效地用于植物中PepMV的检测.同时,本研究首次发现PepMV已在我国云南番茄作物上发生流行.PepMV单克隆抗体的制备及其灵敏血清学检测方法的建立有益于PepMV的田间调查和诊断及其科学防控.

关键词:凤果花叶病毒;单克隆抗体;血清学方法;双抗夹心酶联免疫吸附试验(DAS-ELISA);斑点酶联免疫吸附试验(Dot-ELISA);组织印迹酶联免疫吸附试验(Tissue print-ELISA)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aguilar JM, Hernández-Gallardo MD, Cenis JL, et al., 2002. Complete sequence of the Pepino mosaic virus RNA genome. Arch Virol, 147(10):2009-2015.

[2]Chen Z, Zhang MH, Zhou XP, et al., 2017. Development and detection application of monoclonal antibodies against Zucchini yellow mosaic virus. J Integr Agric, 16(1):115-124.

[3]Córdoba MC, Martínez-Priego L, Jordá C, 2004. New natural hosts of Pepino mosaic virus in Spain. Plant Dis, 88(8):906.

[4]Córdoba-Sellés MDC, García-Rández A, Alfaro-Fernández A, et al., 2007. Seed transmission of Pepino mosaic virus and efficacy of tomato seed disinfection treatments. Plant Dis, 91(10):1250-1254.

[5]Cotillon AC, Girard M, Ducouret S, 2002. Complete nucleotide sequence of the genomic RNA of a French isolate of Pepino mosaic virus (PepMV). Arch Virol, 147(11):2231-2238.

[6]French CJ, Bouthillier M, Bernardy M, et al., 2001. First report of Pepino mosaic virus in Canada and the United States. Plant Dis, 85(10):1121.

[7]Guo LQ, Wu JY, Chen R, et al., 2020. Monoclonal antibody-based serological detection of Rice stripe mosaic virus infection in rice plants or leafhoppers. Virol Sin, 35(2):227-234.

[8]Hanssen IM, Thomma BPHJ, 2010. Pepino mosaic virus: a successful pathogen that rapidly evolved from emerging to endemic in tomato crops. Mol Plant Pathol, 11(2):179-189.

[9]Hanssen IM, Paeleman A, Wittemans L, et al., 2008. Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. Eur J Plant Pathol, 121(2):131-146.

[10]Hanssen IM, Mumford R, Blystad DR, et al., 2010. Seed transmission of Pepino mosaic virus in tomato. Eur J Plant Pathol, 126(2):145-152.

[11]Hasiów-Jaroszewska B, Borodynko N, 2013. Detection of Pepino mosaic virus isolates from tomato by one-step reverse transcription loop-mediated isothermal amplification. Arch Virol, 158(10):2153-2156.

[12]Hasiów-Jaroszewska B, Pospieszny H, Borodynko N, 2009. New necrotic isolates of Pepino mosaic virus representing the Ch2 genotype. J Phytopathol, 157(7-8):494-496.

[13]Huang DQ, Chen R, Wang YQ, et al., 2019. Development of a colloidal gold-based immunochromatographic strip for rapid detection of Rice stripe virus. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 20(4):343-354.

[14]Jones RAC, Koenig R, Lesemann DE, 1980. Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Ann Appl Biol, 94(1):61-68.

[15]Jordá C, Pérez AL, Martínez Culebras PV, et al., 2001. First report of Pepino mosaic virus on natural hosts. Plant Dis, 85(12):1292.

[16]Li FF, Zhang CW, Li YZ, et al., 2018. Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nat Commun, 9:1268.

[17]Li YM, Fan PH, Zhou SS, et al., 2017. Loop-mediated isothermal amplification (LAMP):a novel rapid detection platform for pathogens. Microb Pathog, 107:54-61.

[18]Ling KS, 2008. Pepino mosaic virus on tomato seed: virus location and mechanical transmission. Plant Dis, 92(12):1701-1705.

[19]Ling KS, Wechter WP, Jordan R, 2007. Development of a one-step immunocapture real-time TaqMan RT-PCR assay for the broad spectrum detection of Pepino mosaic virus. J Virol Methods, 144(1-2):65-72.

[20]Ling KS, Wintermantel WM, Bledsoe M, 2008. Genetic composition of Pepino mosaic virus population in North American greenhouse tomatoes. Plant Dis, 92(12):1683-1688.

[21]Liu H, Song XJ, Ni YQ, et al., 2014. Highly sensitive and specific monoclonal antibody-based serological methods for Rice ragged stunt virus detection in rice plants and rice brown planthopper vectors. J Integr Agric, 13(9):1943-1951.

[22]Liu Z, Sunzhu YJ, Zhou XP, et al., 2017. Monoclonal antibody-based serological detection of Citrus yellow vein clearing virus in citrus groves. J Integr Agric, 16(4):884-891.

[23]Mansilla C, Sánchez F, Ponz F, 2003. The diagnosis of the tomato variant of pepino mosaic virus: an IC-RT-PCR approach. Eur J Plant Pathol, 109(2):139-146.

[24]Maroon-Lango CJ, Guaragna MA, Jordan RL, et al., 2005. Two unique US isolates of Pepino mosaic virus from a limited source of pooled tomato tissue are distinct from a third (European-like) US isolate. Arch Virol, 150(6):1187-1201.

[25]Pagán I, Córdoba-Sellés MDC, Martínez-Priego L, et al., 2006. Genetic structure of the population of Pepino mosaic virus infecting tomato crops in Spain. Phytopathology, 96(3):274-279.

[26]Roggero P, Masenga V, Lenzi R, et al., 2001. First report of Pepino mosaic virus in tomato in Italy. Plant Pathol, 50(6):798-798.

[27]Salomone A, Roggero P, 2002. Host range, seed transmission and detection by ELISA and lateral flow of an Italian isolate of Pepino mosaic virus. J Plant Pathol, 84(1):65-68.

[28]Shang HL, Xie Y, Zhou XP, et al., 2011. Monoclonal antibody-based serological methods for detection of Cucumber green mottle mosaic virus. Virol J, 8:228.

[29]Shipp JL, Buitenhuis R, Stobbs L, et al., 2008. Vectoring of Pepino mosaic virus by bumble-bees in tomato greenhouses. Ann Appl Biol, 153(2):149-155.

[30]Song G, Wu JY, Xie Y, et al., 2017. Monoclonal antibody-based serological assays for detection of Potato virus S in potato plants. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(12):1075-1082.

[31]Spence NJ, Basham J, Mumford RA, et al., 2006. Effect of Pepino mosaic virus on the yield and quality of glasshouse-grown tomatoes in the UK. Plant Pathol, 55(5):595-606.

[32]van der Vlugt RAA, Stijger CCMM, Verhoeven JTJ, et al., 2000. First report of Pepino mosaic virus on tomato. Plant Dis, 84(1):303.

[33]Verhoeven JTJ, van der Vlugt R, Roenhorst JW, 2003. High similarity between tomato isolates of Pepino mosaic virus suggests a common origin. Eur J Plant Pathol, 109(5):419-425.

[34]Wu JX, Meng CM, Shang HL, et al., 2011. Monoclonal antibody-based triple antibody sandwich-enzyme-linked immunosorbent assay and immunocapture reverse transcription-polymerase chain reaction for Odontoglossum ringspot virus detection. J Virol Methods, 171(1):40-45.

[35]Wu JX, Ni YQ, Liu H, et al., 2014. Monoclonal antibody-based serological assays and immunocapture-RT-PCR for detecting Rice dwarf virus in field rice plants and leafhopper vectors. J Virol Methods, 195:134-140.

[36]Zhang MH, Chen R, Zhou XP, et al., 2018. Monoclonal antibody-based serological detection methods for wheat dwarf virus. Virol Sin, 33(2):173-180.

[37]Zhang Y, Gao YL, He WQ, et al., 2020. Monoclonal antibody-based serological detection of potato virus M in potato plants and tubers. J Integr Agric, 19(5):1283-1291.

[38]Zhou XP, Chen JH, Li DB, et al., 1994. A method for high yield purification of potyviruse. Microbiology China, 21(3):184-186 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE