CLC number: TP274; TM911.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-07-29
Cited: 1
Clicked: 9878
Ali Tofighi, Mohsen Kalantar. Interconnection and damping assignment and Euler-Lagrange passivity-based control of photovoltaic/battery hybrid power source for stand-alone applications[J]. Journal of Zhejiang University Science C, 2011, 12(9): 774-786.
@article{title="Interconnection and damping assignment and Euler-Lagrange passivity-based control of photovoltaic/battery hybrid power source for stand-alone applications",
author="Ali Tofighi, Mohsen Kalantar",
journal="Journal of Zhejiang University Science C",
volume="12",
number="9",
pages="774-786",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1000368"
}
%0 Journal Article
%T Interconnection and damping assignment and Euler-Lagrange passivity-based control of photovoltaic/battery hybrid power source for stand-alone applications
%A Ali Tofighi
%A Mohsen Kalantar
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 9
%P 774-786
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1000368
TY - JOUR
T1 - Interconnection and damping assignment and Euler-Lagrange passivity-based control of photovoltaic/battery hybrid power source for stand-alone applications
A1 - Ali Tofighi
A1 - Mohsen Kalantar
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 9
SP - 774
EP - 786
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1000368
Abstract: A DC hybrid power source composed of photovoltaic cells as the main power source, li-ion battery storage as the secondary power source, and power electronic interface, is modeled based on port-controlled Hamiltonian systems and Euler-Lagrange framework. Subsequently, passivity-based controllers are synthesized. Local asymptotic stability is ensured as well. In addition, a power management system is designed to manage power flow between components. Modeling and simulation of the proposed hybrid power source is accomplished using MATLAB/Simulink. Our interest is focused on the comparison of the two passivity-based control methods and their use in hybrid power systems.
[1]Ayad, M.Y., Becherif, M., Henni, A., Aboubou, A., Wack, M., Laghrouche, S., 2010. Passivity-based control applied to DC hybrid power source using fuel cell and supercapacitors. Energy Conv. Manag., 51(7):1468-1475.
[2]Becherif, M., Paire, D., Miraoui, A., 2007. Energy Management of Solar Panel and Battery System with Passive Control. Int. Conf. on Clean Electrical Power, p.14-19.
[3]Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., Galván, E., Guisado, R.C.P., Prats, M.Á.M., León, J.I., Moreno-Alfonso, N., 2006. Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans. Ind. Electron., 53(4):1002-1016.
[4]Chen, M., Rincon-Mora, G.A., 2006. Accurate electrical battery model capable of predicting runtime and I–V performance. IEEE Trans. Energy Conv., 21(2):504-511.
[5]Dali, M., Belhadj, J., Roboam, X., 2010. Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: control and energy management— experimental investigation. Energy, 35(6):2587-2595.
[6]Dalsmo, M., van der Schaft, A., 1998. On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J. Control Optim., 37(1):54-91.
[7]Dòria-Cerezo, A., 2006. Modeling, Simulation and Control of a Doubly-Fed Induction Machine Controlled by a Back-to-Back Converter. PhD Thesis, Technical University of Catalonia, Spain.
[8]Durr, M., Cruden, A., Gair, S., McDonald, J.R., 2006. Dynamic model of a lead acid battery for use in a domestic fuel cell system. J. Power Sources, 161(2):1400-1411.
[9]Duryea, S., Isalm, S., Lawrance, W., 2001. A battery management system for stand-alone photovoltaic energy systems. IEEE Ind. Appl. Mag., 7(3):67-72.
[10]El-Shatter, T.F., Eskander, M.N., El-Hagry, M.T., 2006. Energy flow and management of a hybrid wind/PV/fuel cell generation system. Energy Conv. Manag., 47(9-10):1264-1280.
[11]Escobar, G., Ortega, R., Sira-Ramirez, H., Vilain, J.P., Zein, I., 1999. An experimental comparison of several nonlinear controllers for power converters. IEEE Control Syst. Mag., 19(1):66-82.
[12]Esram, T., Chapman, P.L., 2007. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Conv., 22(2):439-449.
[13]Glavin, M.E., Chan, P.K.W., Armstrong, S., Hurley, W.G., 2008. A Stand-Alone Photovoltaic Supercapacitor Battery Hybrid Energy Storage System. 13th Int. Power Electronics and Motion Control Conf., p.1688-1695.
[14]Golkar, M.A., Hajizadeh, A., 2009. Control strategy of hybrid fuel cell/battery distributed generation system for grid-connected operation. J. Zhejiang Univ.-Sci. A, 10(4):488-496.
[15]Jeong, K.S., Lee, W.Y., Kim, C.S., 2005. Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics. J. Power Sources, 145(2):319-326.
[16]Jiang, Z., Gao, L., Dougal, R.A., 2007. Adaptive control strategy for active power sharing in hybrid fuel cell/battery power sources. IEEE Trans. Energy Conv., 22(2):507-515.
[17]Khateeb, S.A., Farid, M.M., Selman, J.R., Al-Hallaj, S., 2006. Mechanical–electrochemical modeling of Li-ion battery designed for an electric scooter. J. Power Sources, 158(1):673-678.
[18]Kim, D.E., Lee, D.C., 2007. Feedback Linearization Control of Three-Phase AC/DC PWM Converters with LCL Input Filters. 7th Int. Conf. on Power Electronics, p.766-771.
[19]Kim, I.S., Kim, M.B., Youn, M.J., 2006. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system. IEEE Trans. Ind. Electron., 53(4):1027-1035.
[20]Komurcugil, H., 2010. Steady-state analysis and passivity-based control of single-phase PWM current-source inverters. IEEE Trans. Ind. Electron., 57(3):1026-1030.
[21]Koutroulis, E., Kalaitzakis, K., Voulgaris, N.C., 2001. Development of a microcontroller based, photovoltaic maximum power point tracking control system. IEEE Trans. Power Electron., 16(1):46-54.
[22]Kwasinski, A., Krein, P.T., 2007. Passivity-Based Control of Buck Converters with Constant-Power Loads. IEEE Power Electronics Specialists Conf., p.259-265.
[23]Kwon, J.M., Nam, K.H., Kwon, B.H., 2006. Photovoltaic power conditioning system with line connection. IEEE Trans. Ind. Electron., 53(4):1048-1054.
[24]Kwon, J.M., Kwon, B.H., Nam, K.H., 2008. Three-phase photovoltaic system with three-level boosting MPPT control. IEEE Trans. Power Electron., 23(5):2319-2327.
[25]Lagorse, J., Paire, D., Miraoui, A., 2009. Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery. Renew. Energy, 34(3):683-691.
[26]Lee, T.S., 2004. Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-source converters. IEEE Trans. Ind. Electron., 51(4):892-902.
[27]Leyva, R., Cid-Pastor, A., Alonso, C., Queinnec, I., Tarbouriech, S., Martinez-Salamero, L., 2006. Passivity-based integral control of a boost converter for large-signal stability. IEE Proc.-Control Theory Appl., 153(2):139-146.
[28]Lu, D.D.C., Agelidis, V.G., 2009. Photovoltaic-battery-powered DC bus system for common portable electronic devices. IEEE Trans. Power Electron., 24(3):849-855.
[29]Márquez-Contreras, R., Rodríguez-Cortés, H., Spinetti-Rivera, M., 2008. Revisiting IDA-PBC, Open-Loop Control, and Modeling for the Boost DC-DC Power Converter. Latin American Congress of Automatic Control.
[30]Mazumder, S.K., Nayfeh, A.H., Borojevic, D., 2002. Robust control of parallel DC–DC buck converters by combining integral-variable-structure and multiple-sliding-surface control schemes. IEEE Trans. Power Electron., 17(3):428-437.
[31]Moreno, J., Ortúzar, M.E., Dixon, J.W., 2006. Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks. IEEE Trans. Ind. Electron., 53(2):614-623.
[32]Ortega, R., Loria, A., Nicklasson, P.J., Sira-Ramirez, H., 1998. Passivity Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electrochemical Applications. Springer-Verlag, London, UK.
[33]Ortega, R., van der Schaft, A., Maschke, B., Escobar, G., 2002. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 38(4):585-596.
[34]Scarpa, V., Buso, S., Spiazzi, G., 2009. Low-complexity MPPT technique exploiting the PV module MPP locus characterization. IEEE Trans. Ind. Electron., 56(5):1531-1538.
[35]Scherpen, J.M.A., Jeltsema, D., Klaassens, J.B., 2003. Lagrangian modeling of switching electrical networks. Syst. Control Lett., 48(5):365-374.
[36]Sebastian, R., Quesada, J., 2006. Distributed control system for frequency control in an isolated wind system. Renew. Energy, 31(3):285-305.
[37]Sera, D., Kerekes, T., Teodorescu, R., Blaabjerg, F., 2006. Improved MPPT Algorithms for Rapidly Changing Environmental Conditions. 12th Int. Conf. on Power Electronics and Motion Control, p.1614-1619.
[38]Sira-Ramirez, H., Ortega, R., Garcia-Esteban, M., 1998. Adaptive passivity-based control of average DC-to-DC power converter models. Int. J. Adapt. Control Signal Process., 12(1):63-80.
[39]Timbus, A., Liserre, M., Teodorescu, R., Rodriguez, P., Blaabjerg, F., 2009. Evaluation of current controllers for distributed power generation systems. IEEE Trans. Power Electron., 24(3):654-664.
[40]Uzunoglu, M., Onar, O.C., Alam, M.S., 2009. Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications. Renew. Energy, 34(3):509-520.
[41]Vmquez, N., Hernandez, C., Alvarez, J., Arau, J., 2003. Sliding Mode Control for DC/DC Converters: a New Sliding Surface. Int. Symp. on Industrial Electronics, p.422-426.
[42]Walker, G., 2001. Evaluating MPPT converter topologies using a Matlab PV model. J. Electr. Electron. Eng. Aust., 21(1):49-56.
[43]Wang, P., Wang, J., Xu, Z., 2008. Passivity-Based Control of Three Phase Voltage Source PWM Rectifiers Based on PCHD Model. Int. Conf. on Electrical Machines and Systems, p.1126-1130.
[44]Wang, Z., Chang, L., 2008. A DC voltage monitoring and control method for three-phase grid-connected wind turbine inverters. IEEE Trans. Power Electron., 23(3):1118-1125.
[45]Yu, D., Yuvarajan, S., 2006. Load Sharing in a Hybrid Power Source with a PV Panel and PEM Fuel-Cell. 21st Annual IEEE Conf. and Exposition on Applied Power Electronics, p.1245-1249.
Open peer comments: Debate/Discuss/Question/Opinion
<1>