Full Text:   <2895>

CLC number: TH81

On-line Access: 2013-04-03

Received: 2012-09-24

Revision Accepted: 2013-01-07

Crosschecked: 2013-03-22

Cited: 2

Clicked: 6585

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2013 Vol.14 No.4 P.274-278


A trapezoidal cantilever density sensor based on MEMS technology

Author(s):  Li-bo Zhao, Long-qi Xu, Gui-ming Zhang, Yu-long Zhao, Xiao-po Wang, Zhi-gang Liu, Zhuang-de Jiang

Affiliation(s):  State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China; more

Corresponding email(s):   libozhao@mail.xjtu.edu.cn, hezexulongqi@stu.xjtu.edu.cn

Key Words:  Micro-electro-mechanical systems (MEMS), Density sensor, Trapezoidal cantilever, Resonant frequency

Li-bo Zhao, Long-qi Xu, Gui-ming Zhang, Yu-long Zhao, Xiao-po Wang, Zhi-gang Liu, Zhuang-de Jiang. A trapezoidal cantilever density sensor based on MEMS technology[J]. Journal of Zhejiang University Science C, 2013, 14(4): 274-278.

@article{title="A trapezoidal cantilever density sensor based on MEMS technology",
author="Li-bo Zhao, Long-qi Xu, Gui-ming Zhang, Yu-long Zhao, Xiao-po Wang, Zhi-gang Liu, Zhuang-de Jiang",
journal="Journal of Zhejiang University Science C",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A trapezoidal cantilever density sensor based on MEMS technology
%A Li-bo Zhao
%A Long-qi Xu
%A Gui-ming Zhang
%A Yu-long Zhao
%A Xiao-po Wang
%A Zhi-gang Liu
%A Zhuang-de Jiang
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 4
%P 274-278
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C12MNT06

T1 - A trapezoidal cantilever density sensor based on MEMS technology
A1 - Li-bo Zhao
A1 - Long-qi Xu
A1 - Gui-ming Zhang
A1 - Yu-long Zhao
A1 - Xiao-po Wang
A1 - Zhi-gang Liu
A1 - Zhuang-de Jiang
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 4
SP - 274
EP - 278
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C12MNT06

A trapezoidal cantilever density sensor is developed based on micro-electro-mechanical systems (MEMS) technology. The sensor measures fluid density through the relationship between the density and the resonant frequency of the cantilever immersed in the fluid. To improve the sensitivity of the sensor, the modal and harmonic response analyses of trapezoidal and rectangular cantilevers are simulated by ANSYS software. The higher the resonant frequency of the cantilever immersed in the fluid, the higher the sensitivity of the sensor; the higher the resonant strain value, the easier the detection of the output signal of the sensor. Based on the results of simulation, the trapezoidal cantilever is selected to measure the densities of dimethyl silicone and toluene at the temperature ranges of 30 to 55 °C and 26 to 34 °C, respectively. Experimental results show that the trapezoidal cantilever density sensor has a good performance.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Brandstetter, S., Riesch, C., Reichel, E.K., 2009. Sensing viscosity and density with a micromachined suspended plate resonator. Proc. Chem., 1(1):1467-1470.

[2]Cao-Paz, A.M., Rodríguez-Pardo, L., Fariña, J., Marcos-Acevedo, J., 2012. Resolution in QCM sensors for the viscosity and density of liquids: application to lead acid batteries. Sensors, 12(8):10604-10620.

[3]Corman, T., Enoksson, P., Noren, K., Stemme, G., 2000. A low-pressure encapsulated resonant fluid density sensor with feedback control electronics. Meas. Sci. Technol., 11(3):205-211.

[4]Ghatkesar, M.K., Rakhmatullina, E., Lang, H.P., Gerber, C., Hegner, M., Braun, T., 2008. Multi-parameter micro cantilever sensor for comprehensive characterization of Newtonian fluids. Sens. Actuat. B, 135(1):133-138.

[5]Goodwin, A.R.H., Donzier, E.P., Vancauwenberghe, O., 2006. A vibrating edge supported plate, fabricated by the methods of micro electro mechanical system for the simultaneous measurement of density and viscosity: results for methylbenzene and octane at temperatures between (323 and 423) K and pressures in the range (0.1 to 68) MPa. J. Chem. Eng. Data, 51(1):190-208.

[6]Harrison, C., Seungoh, R., Goodwin, A., Hsu, K., Donzier, E., Marty, F., Mercier, B., 2006. A MEMS sensor for the measurement of density-viscosity for oilfield applications. SPIE, 6111:61110D-1-61110D-11.

[7]Heinisch, M., Reichel, E.K., Dufour, I., Jakoby, B., 2011. A resonating rheometer using two polymer membranes for measuring liquid viscosity and mass density. Sens. Actuat. A, 172(1):82-87.

[8]Igarashi, K., Kawashima, K., Kagawa, T., 2007. Development of simultaneous measurement system for instantaneous density, viscosity and flow rate of gases. Sens. Actuat. A, 140(1):1-7.

[9]Li, H., Wang, J., Li, X., Chen, D., 2011. Viscosity-density sensor with resonant torsional paddle for direct detection in liquid. IET Nanobiotechnol., 5(4):121-125.

[10]Liao, H.S., Huang, K.Y., Chang, C.S., 2011. Cantilever-Based Mass Sensor Using High Order Resonances for Liquid Environment. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.652-655.

[11]Najmzadeh, M., Haasl, S., Enoksson, P., 2007. A silicon straight tube fluid density sensor. J. Micromech. Microeng., 17(8):1657.

[12]Rezazadeh, G., Ghanbari, M., Mirzaee, I., Keyvani, A., 2010. On the modeling of a piezoelectrically actuated microsensor for simultaneous measurement of fluids viscosity and density. Measurement, 43(10):1516-1524.

[13]Rust, P., Dual, J., 2011. Novel Method for Gated Inductive Readout for Highly Sensitive and Low Cost Viscosity and Density Sensors. 16th Int. Solid-State Sensors, Actuators and Microsystems Conf., p.1088-1091.

[14]Sparks, D., Smith, R., Schneider, R., Cripe, J., Massoud, A.S., Chimbayo, A., Najafi, N., 2003. A variable temperature, resonant density sensor made using an improved chip-level vacuum package. Sens. Actuat. A, 107(2):119-124.

[15]Sparks, D., Smith, R., Patel, J., Najafi, N., 2011. A MEMS-based low pressure, light gas density and binary concentration sensor. Sens. Actuat. A, 171(2):159-162.

[16]Waszczuk, K., Piasecki, T., Nitsch, K., Gotszalk, T., 2011. Application of piezoelectric tuning forks in liquid viscosity and density measurements. Sens. Actuat. B, 160(1):517-523.

[17]Waugh, W.H., Gallacher, B.J., Burdess, J.S., 2011. A high-sensitivity resonant sensor realized through the exploitation of nonlinear dynamic behaviour. Meas. Sci. Technol., 22(10):105202.

[18]Wilson, L., Campbell, A., Mutharasan, R., 2007. Viscosity and density values from excitation level response of piezoelectric-excited cantilever sensors. Sens. Actuat. A, 138(1):44-51.

[19]Zribi, A., Knobloch, A., Tian, W.C., Goodwin, S., 2005. Micromachined resonant multiple gas sensor. Sens. Actuat. A, 122(1):31-38.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE