Full Text:   <2473>

Summary:  <1887>

CLC number: TP301

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-09-04

Cited: 0

Clicked: 6213

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lei Yu

http://orcid.org/0000-0003-4316-1763

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.10 P.1361-1377

http://doi.org/10.1631/FITEE.1800119


Low powered blockchain consensus protocols based on consistent hash


Author(s):  Lei Yu, Xiao-fang Zhao, Yan Jin, Heng-yi Cai, Bo Wei, Bin Hu

Affiliation(s):  University of Chinese Academy of Sciences, Beijing 100190, China; more

Corresponding email(s):   yulei@ncic.ac.cn

Key Words:  Blockchain, Consensus protocol, Consistent hash, Low energy consumption]>


Lei Yu, Xiao-fang Zhao, Yan Jin, Heng-yi Cai, Bo Wei, Bin Hu. Low powered blockchain consensus protocols based on consistent hash[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(10): 1361-1377.

@article{title="Low powered blockchain consensus protocols based on consistent hash",
author="Lei Yu, Xiao-fang Zhao, Yan Jin, Heng-yi Cai, Bo Wei, Bin Hu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="10",
pages="1361-1377",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800119"
}

%0 Journal Article
%T Low powered blockchain consensus protocols based on consistent hash
%A Lei Yu
%A Xiao-fang Zhao
%A Yan Jin
%A Heng-yi Cai
%A Bo Wei
%A Bin Hu
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 10
%P 1361-1377
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800119

TY - JOUR
T1 - Low powered blockchain consensus protocols based on consistent hash
A1 - Lei Yu
A1 - Xiao-fang Zhao
A1 - Yan Jin
A1 - Heng-yi Cai
A1 - Bo Wei
A1 - Bin Hu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 10
SP - 1361
EP - 1377
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800119


Abstract: 
Current blockchain consensus protocols have a triangle of contradictions in aspects of decentralization, security, and energy con-sumption, and cannot be synchronously optimized. We describe a design of two new blockchain consensus protocols, called “CHB-consensus” and “CHBD-consensus,” based on a consistent hash algorithm. Honest miners can fairly gain the opportunity to create blocks. They do not consume any extra computational power resources when creating new blocks, and such blocks can obtain the whole blockchain network to confirm consensus with fairness. However, malicious miners have to pay massive computational power resources for attacking the new block creation privilege or double-spending. blockchain networks formed by CHB-consensus and CHBD-consensus are based on the same security assumption as that in Bitcoin systems, so they save a huge amount of power without sacrificing decentralization or security. We analyze possible attacks and give a rigorous but adjustable validation strategy. CHB-consensus and CHBD-consensus introduce a certification authority (CA) system, which does not have special management or control rights over blockchain networks or data structures, but carries the risk of privacy breaches depending on credibility and reliability of the CA system. Here, we analyze the robustness and energy consumption of CHB-consensus and CHBD-consensus, and demonstrate their advantages through theoretical derivation.

基于一致性哈希算法的低能耗共识协议

摘要:当前区块链共识协议在去中心化、安全性和能耗方面存在"三难"优化困境。针对这个问题,基于一致性哈希算法,设计了两个新的区块链共识协议,分别为CHB-consensus和CHBD-consensus。在新的共识协议下,诚实的"矿工"可以公平地获得创建新区块的机会。在创建新块时,诚实矿工不再需要付出海量竞争性算力,且该新区块可获取整个区块链网络公平验证及确认共识协议。恶意矿工则必须付出海量算力资源才能攻击新区块,以创建特权或实现"双花"。由CHB-consensus和CHBD-consensus共识形成的区块链网络基于与比特币系统相同的安全性假设,在节省海量电力的同时,不会牺牲去中心化和安全性。分析了可能的攻击行为,并给出严格但可调整的验证策略。CHB-consensus和CHBD-consensus共识引入数字身份证书管理机构(CA),CA对区块链网络或区块链数据结构没有特殊管理权或控制权,但依据CA系统信誉和可靠性,存在一定隐私泄露风险。最后,分析了CHB-consensus和CHBD-consensus共识的鲁棒性和能耗,并通过理论推导证明它们的优势。

关键词:区块链;共识协议;一致性哈希;低能耗;去中心化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Asolo B, 2018. Delegated proof-of-stake (DPoS) explained. https://www.mycryptopedia.com/delegated-proof-stake-dpos-explained/

[2]Back A, 2002. Hashcash—a denial of service counter-measure. http://www.hashcash.org/papers/hashcash.pdf

[3]Bahri L, Girdzijauskas S, 2018. When trust saves energy: a reference framework for proof of trust (PoT) blockchains. Companion Proc Web Conf, p.1165-1169.

[4]Castro M, Liskov B, 1999. Practical Byzantine fault tolerance. Proc 3rd Symp on Operating Systems Design and Implementation, p.173-186.

[5]Douceur JR, 2002. The Sybil attack. In: Druschel P, Kaashoek F, Rowstron A (Eds.), Peer-to-Peer Systems. Springer Berlin Heidelberg, p.251-260.

[6]Dwork C, Naor M, 1992. Pricing via processing or combatting junk mail. Proc 12th Annual Int Cryptology Conf on Advances in Cryptology, p.139-147.

[7]Fan J, Yi LT, Shu JW, 2013. Research on the technologies of Byzantine system. J Softw, 24(6):1346-1360 (in Chinese).

[8]Fedotova N, Veltri L, 2006. Byzantine generals problem in the light of P2P computing. Proc 3rd Annual Int Conf on Mobile and Ubiquitous Systems: Networking & Services, p.1-5.

[9]Giungato P, Rana R, Tarabella A, et al., 2017. Current trends in sustainability of Bitcoins and related blockchain technology. Sustainability, 9(12), Article 2214.

[10]Karger D, Lehman E, Leighton T, et al., 1997. Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the World Wide Web. Proc 29th Annual ACM Symp on Theory of Computing, p.654-663.

[11]King S, Nadal S, 2012. PPCoin: peer-to-peer crypto-currency with proof-of-stake. https://peercoin.net/assets/paper/peercoin-paper.pdf

[12]Lamport L, 1983. The weak Byzantine generals problem. J ACM, 30(3):668-676.

[13]Lamport L, Shostak R, Pease M, 1982. The Byzantine generals problem. ACM Trans Programm Lang Syst, 4(3):382 401.

[14]Milutinovic M, He W, Wu H, et al., 2016. Proof of luck: an efficient blockchain consensus protocol. Proc 1st Workshop on System Software for Trusted Execution, p.1-6.

[15]Mishra SP, Jacob V, Radhakrishnan S, 2017. Energy consumption—Bitcoin’s Achilles heel. https://ssrn.com/abstract=3076734

[16]Nakamoto S, 2008. Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf

[17]Nelson M, 2007. The Byzantine generals problem. http://www.drdobbs.com/cpp/the-byzantine-generals-problem/206904396

[18]O’Dwyer KJ, Malone D, 2014. Bitcoin mining and its energy footprint. Proc 25th IET Irish Signals & Systems Conf and China-Ireland Int Conf on Information and Communications Technologies, p.280-285.

[19]Reischuk R, 1985. A new solution for the Byzantine generals problem. Inform Contr, 64(1-3):23-42.

[20]Vranken H, 2017. Sustainability of Bitcoin and blockchains. Curr Opin Environ Sustain, 28:1-9.

[21]Yuan Y, Wang FY, 2016. Blockchain: the state of the art and future trends. Acta Autom Sin, 42(4):481-494 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE