CLC number: O441
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-01-18
Cited: 0
Clicked: 5968
Citations: Bibtex RefMan EndNote GB/T7714
Xiao-xi Zhang, Ai-di Ren, Ying Liu. Decoupling methods of MIMO antenna arrays for 5G applications: a review[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(1): 62-71.
@article{title="Decoupling methods of MIMO antenna arrays for 5G applications: a review",
author="Xiao-xi Zhang, Ai-di Ren, Ying Liu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="1",
pages="62-71",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900466"
}
%0 Journal Article
%T Decoupling methods of MIMO antenna arrays for 5G applications: a review
%A Xiao-xi Zhang
%A Ai-di Ren
%A Ying Liu
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 1
%P 62-71
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900466
TY - JOUR
T1 - Decoupling methods of MIMO antenna arrays for 5G applications: a review
A1 - Xiao-xi Zhang
A1 - Ai-di Ren
A1 - Ying Liu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 1
SP - 62
EP - 71
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900466
Abstract: Multiple-input multiple-output (MIMO) technique is a key technique for communication in the future. It can effectively enhance channel capacity. For future fifth-generation (5G) terminals, it is still a challenging task to realize desirable isolation within a compact size. To achieve an acceptable isolation level, many decoupling methods have been developed. We review the most recent research on decoupling methods, including the employment of external decoupling structures, orthogonal modes, and reduction of ground effect, and discuss the development trends of the MIMO array in 5G smartphones.
[1]Al-Dulaimi A, Al-Rubaye S, Ni Q, et al., 2015. 5G communications race: pursuit of more capacity triggers LTE in unlicensed band. IEEE Veh Technol Mag, 10(1):43-51.
[2]Al-Hadi AA, Ilvonen J, Valkonen R, et al., 2014. Eight- element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band. Microw Opt Technol Lett, 56:1323-1327.
[3]Ban YL, Li C, Sim CYD, et al., 2016. 4G/5G multiple antennas for future multi-mode smartphone applications. IEEE Access, 4:2981-2988.
[4]Chen QG, Lin HW, Wang JP, et al., 2019, Single ring slot- based antennas for metal-rimmed 4G/5G smartphones. IEEE Trans Antenn Propag, 67(3):1476-1487.
[5]Deng CJ, Liu D, Lv X, 2019. Tightly-arranged four-element MIMO antennas for 5G mobile terminals. IEEE Trans Antenn Propag, 67(10):6353-6361.
[6]Deng JY, Yao J, Sun DQ, et al., 2018. Ten-element MIMO antenna for 5G terminals. Microw Opt Technol Lett, 60(12):3045-3049.
[7]Diallo A, Luxey C, Le Thuc P, et al., 2006. Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands. IEEE Trans Antenn Propag, 54(11):3063-3074.
[8]Ghalib A, Sharawi MS, 2017. TCM analysis of defected ground structures for MIMO antenna designs in mobile terminals. IEEE Access, 5:19680-19692.
[9]Guo J, Cui L, Li C, et al., 2018. Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications. IEEE Trans Antenn Propag, 66(12):7412- 7417.
[10]Hong WB, 2017. Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift. IEEE Microw Mag, 18(7):86-102.
[11]Huang C, Jiao YC, Weng ZB, 2018. Novel compact CRLH- TL-based tri-band MIMO antenna element for the 5G mobile handsets. Microw Opt Technol Lett, 60(10):2559- 2564.
[12]ITU, 2015. World Radio Communication Conference Allocates Spectrum for Future Innovation, Conference Outcomes to Spur Long-term Investments in ICT Industry. http://www.itu.int/net/pressoffice/press_releases/2015/56.aspx
[13]Jiang W, Liu B, Cui YQ, et al., 2019a. High-isolation eight- element MIMO array for 5G smartphone applications. IEEE Access, 7:34104-34112.
[14]Jiang W, Cui YQ, Liu B, et al., 2019b. A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications. IEEE Access, 7:112554-112563.
[15]Jin YN, Ko M, O YJ, et al., 2019. A planar UWB MIMO antenna with gain enhancement and isolation improvement for the 5G mobile platform. Microw Opt Technol Lett, 61(4):990-998.
[16]Li MY, Ban YL, Xu ZQ, et al., 2016. Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Trans Antenn Propag, 64(9):3820-3830.
[17]Li MY, Xu ZQ, Ban YL, et al., 2017. Eight-port orthogonally dual-polarized MIMO antennas using loop structures for 5G smartphone. IET Microw Antennas Propag, 11(12): 1810-1816.
[18]Li MY, Ban YL, Xu ZQ, et al., 2018. Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access, 6:6160-6170.
[19]Li YX, Sim CYD, Luo Y, et al., 2018a. 12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications. IEEE Access, 6:344- 354.
[20]Li YX, Sim CYD, Luo Y, et al., 2018b. Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphone. IEEE Access, 6:28041-28053.
[21]Li YX, Sim CYD, Luo Y, et al., 2019. High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones. IEEE Trans Antenn Propag, 67(6):3820-3830.
[22]Liu DQ, Zhang M, Luo HJ, et al., 2018. Dual-band platform- free PIFA for 5G MIMO application of mobile devices. IEEE Trans Antenn Propag, 66(11):6328-6333.
[23]Liu DQ, Luo HJ, Zhang M, et al., 2019. An extremely low- profile wideband MIMO antenna for 5G smart-phones. IEEE Trans Antenn Propag, 67(9):5772-5780.
[24]Liu Y, Ren AD, Liu H, et al., 2019. Eight-port MIMO array using characteristic mode theory for 5G smartphone applications. IEEE Access, 7:45679-45692.
[25]Lu JY, Chang HJ, Wong KL, 2015. 10-antenna array in the smartphone for the 3.6-GHz MIMO operation. Proc IEEE Int Symp on Antennas and Propagation & USNC/URSI National Radio Science Meeting, p.1220-1221.
[26]Lu JY, Wong KL, Li WY, 2016. Compact eight-antenna array in the smartphone for the 3.5-GHz LTE 8×8 MIMO operation. Proc IEEE 5th Asia-Pacific Conf on Antennas and Propagation, p.323-324.
[27]Parchin NO, Al-Yasir YIA, Ali AH, et al., 2019. Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications. IEEE Access, 7:15612-15622.
[28]Paulraj A, Nabar R, Gore D, 2003. Introduction to Space-Time Wireless Communications. Cambridge University Press, Cambridge, UK.
[29]Qin ZJ, Wen GY, Zhang M, et al., 2016. Printed eight-element MIMO system for compact and thin 5G mobile handset. Electron Lett, 52(6):416-418.
[30]Qu LY, Lee H, Shin H, et al., 2017. MIMO antennas using controlled orthogonal characteristic modes by metal rims. IET Microw Antenn Propag, 11(7):1009-1015.
[31]Ren AD, Liu Y, Sim CYD, 2019. A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone. IEEE Trans Antenn Propag, 67(10):6430-6438.
[32]Sun LB, Feng HG, Li Y, 2018a. Tightly arranged orthogonal mode antenna for 5G MIMO mobile terminal. Microw Opt Technol Lett, 60(7):1751-1756.
[33]Sun LB, Feng HG, Li Y, et al., 2018b. Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal- mode pairs. IEEE Trans Antenn Propag, 66(11):6364- 6369.
[34]Tsai CY, Wong KL, Li WY, 2018. Experimental results of the multi-GBPs smartphone with 20 multi-input multi-output (MIMO) antennas in the 20×12 MIMO operation. Microw Opt Technol Lett, 60(8):2001-2010.
[35]Wong KL, Lu JY, Chen LY, et al., 2015. 16-antenna array in the smartphone for the 3.5-GHz MIMO operation. Asia- Pacific Microwave Conf, p.1-3.
[36]Wong KL, Lu JY, Chen LY, et al., 2016. 8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone. Microw Opt Technol Lett, 58(1):174-181.
[37]Wong KL, Tsai CY, Lu JY, 2017. Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone. IEEE Trans Antenn Propag, 65(4):1765- 1778.
[38]Wong KL, Chang HJ, Li WY, 2018a. Integrated triple- wideband triple-inverted-F antenna covering 617–960/ 1710–2690/3300–4200 MHz for 4G/5G communications in the smartphone. Microw Opt Technol Lett, 60(9):2091- 2096.
[39]Wong KL, Chen YH, Li WY, 2018b. Decoupled compact ultra-wideband MIMO antennas covering 3300– 6000 MHz for the fifth-generation mobile and 5 GHz WLAN operations in the future smartphone. Microw Opt Technol Lett, 60(10):2345-2351.
[40]Wong KL, Lin BW, Lin SE, 2019a. High-isolation conjoined loop multi-input multi-output antennas for the fifth- generation tablet device. Microw Opt Technol Lett, 61(1):111-119.
[41]Wong KL, Chen YH, Li WY, 2019b. Conjoined ultra- wideband (2300–6000 MHz) dual antennas for LTE HB/WiFi/5G multi-input multi-output operation in the fifth-generation tablet device. Microw Opt Technol Lett, 61(8):1958-1963.
[42]Xu H, Zhou H, Gao S, et al., 2017. Multimode decoupling technique with independent tuning characteristic for mobile terminals. IEEE Trans Antenn Propag, 65(12): 6739-6751.
[43]Zhang XG, Li YX, Wang W, et al., 2019. Ultra-wideband 8-port MIMO antenna array for 5G metal-frame smartphones. IEEE Access, 7:72273-72282.
[44]Zhao AP, Ren ZY, 2019a. Multiple-input and multiple-output antenna system with self-isolated antenna element for fifth-generation mobile terminals. Microw Opt Technol Lett, 61(1):20-27.
[45]Zhao AP, Ren ZY, 2019b. Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications. IEEE Antenn Wirel Propag Lett, 18(1):152-156.
[46]Zhao X, Yeo SP, Ong LC, 2018. Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform. IEEE Trans Antenn Propag, 66(9):4485-4495.
Open peer comments: Debate/Discuss/Question/Opinion
<1>