CLC number: TP13
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-09-01
Cited: 0
Clicked: 7169
Ouassim MENACER, Abderraouf MESSAI, Lazhar KASSA-BAGHDOUCHE. Design and analysis of a proportional-integral controller based on a Smith predictor for TCP/AQM network systems[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(2): 291-303.
@article{title="Design and analysis of a proportional-integral controller based on a Smith predictor for TCP/AQM network systems",
author="Ouassim MENACER, Abderraouf MESSAI, Lazhar KASSA-BAGHDOUCHE",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="2",
pages="291-303",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000245"
}
%0 Journal Article
%T Design and analysis of a proportional-integral controller based on a Smith predictor for TCP/AQM network systems
%A Ouassim MENACER
%A Abderraouf MESSAI
%A Lazhar KASSA-BAGHDOUCHE
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 2
%P 291-303
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000245
TY - JOUR
T1 - Design and analysis of a proportional-integral controller based on a Smith predictor for TCP/AQM network systems
A1 - Ouassim MENACER
A1 - Abderraouf MESSAI
A1 - Lazhar KASSA-BAGHDOUCHE
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 2
SP - 291
EP - 303
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000245
Abstract: active queue management (AQM) is essential to prevent the degradation of quality of service in TCP/AQM systems with round-trip time (RTT) delay. RTT delays are primarily caused by packet-propagation delays, but they can also be caused by the processing time of queuing operations and dynamically changing network situations. This study focuses on the design and analysis of an AQM digital controller under time-delay uncertainty. The controller is based on the smith predictor algorithm and is called the SMITHPI controller. This study also demonstrates the stability of the controller and its robustness against network parameter variations such as the number of TCP connections, time delays, and user datagram protocol flows. The performance, robustness, and effectiveness of the proposed SMITHPI controller are evaluated using the NS-2 simulator. Finally, the performance of the SMITHPI controller is compared with that of a well-known queue-based AQM, called the proportional-integral controller.
[1]Alaoui SB, Tissir EH, Chaibi N, 2018. Active queue management based feedback control for TCP with successive delays in single and multiple bottleneck topology. Comput Commun, 117:58-70. doi: 10.1016/j.comcom.2018.01.003
[2]Alvarez T, Martínez D, 2013. Handling the congestion control problem of TCP/AQM wireless networks with PID controllers. In: Yang GC, Ao SL, Gelman L (Eds.), IAENG Transactions on Engineering Technologies: Special Volume of the World Congress on Engineering 2012. Springer, Dordrecht, p.365-379. doi: 10.1007/978-94-007-6190-2_28
[3]Barzamini R, Shafiee M, Dadlani A, 2012. Adaptive generalized minimum variance congestion controller for dynamic TCP/AQM networks. Comput Commun, 35(2):170-178. doi: 10.1016/j.comcom.2011.08.010
[4]Bisoy SK, Pattnaik PK, 2017. Design of feedback controller for TCP/AQM networks. Eng Sci Technol Int J, 20(1):116-132. doi: 10.1016/j.jestch.2016.10.002
[5]Chebli S, Elakkary A, Sefiani N, 2017. Multi-objective genetic algorithm optimization using PID controller for AQM-TCP networks. Int Rev Autom Contr, 10(1):33-39. doi: 10.15866/ireaco.v10i1.11143
[6]Hollot CV, Misra V, Towsley D, et al., 2001. On designing improved controllers for AQM routers supporting TCP flows. Proc 20th Annual Joint Conf of the IEEE Computer and Communications Society, Conf on Computer Communications, p.1726-1734. doi: 10.1109/INFCOM.2001.916670
[7]Hollot CV, Misra V, Towsley D, et al., 2002. Analysis and design of controllers for AQM routers supporting TCP flows. IEEE Trans Autom Contr, 47(6):945-959. doi: 10.1109/TAC.2002.1008360
[8]Isermann R, 1989. Digital Control Systems, Vol. 1, Fundamentals, Deterministic Control (2nd Ed.). Springer-Verlag, Berlin, Germany.
[9]Kahe G, Jahangir AH, 2019. A self-tuning controller for queuing delay regulation in TCP/AQM networks. Telecommun Syst, 71(2):215-229. doi: 10.1007/s11235-018-0526-1
[10]Kahe G, Jahangir AH, Ebrahimi B, 2014. AQM controller design for TCP networks based on a new control strategy. Telecommun Syst, 57(4):295-311. doi: 10.1007/s11235-013-9859-y
[11]Khoshnevisan L, Salmasi FR, 2016. A robust and high-performance queue management controller for large round trip time networks. Int J Syst Sci, 47(7):1586-1597. doi: 10.1080/00207721.2014.941959
[12]Kurz H, Goedecke W, 1981. Digital parameter-adaptive control of processes with unknown dead time. Automatica, 17(1):245-252. doi: 10.1016/0005-1098(81)90099-6
[13]Ma XY, 2008. The Research of Internet Congestion Control Algorithm. MS Thesis, Lanzhou University of Technology, Lanzhou, China (in Chinese).
[14]Manjunath S, Raina G, 2019. Stability and performance of compound TCP with a proportional integral queue policy. IEEE Trans Contr Syst Technol, 27(5):2139-2155. doi: 10.1109/TCST.2018.2855141
[15]Ogata K, 2010. Modern Control Engineering (5th Ed.). Prentice Hall, Upper Saddle River, USA.
[16]Ramakrishnan K, Floyd S, Black D, 2001. The Addition of Explicit Congestion Notification (ECN) to IP. RFC 3168.
[17]Riley GF, Henderson TR, 2010. The NS-3 network simulator. In: Wehrle K, Güneş M, Gross J (Eds.) Modeling and Tools for Network Simulation. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-12331-3_2
[18]Ryu S, Rump C, Qiao CM, 2003a. Advances in Internet congestion control. IEEE Commun Surv Tut, 5(1):28-39. doi: 10.1109/COMST.2003.5342228
[19]Ryu S, Rump C, Qiao CM, 2003b. A predictive and robust active queue management for Internet congestion control. Proc 8th IEEE Symp on Computers and Communications, p.991-998. doi: 10.1109/ISCC.2003.1214245
[20]Sheikhan M, Shahnazi R, Hemmati E, 2013. Adaptive active queue management controller for TCP communication networks using PSO-RBF models. Neur Comput Appl, 22(5):933-945. doi: 10.1007/s00521-011-0786-0
[21]Wang DZ, Wu SJ, 2014. Design of the congestion control for TCP/AQM network with time-delay. Math Probl Eng, 2014:834698. doi: 10.1155/2014/834698
[22]Wang K, Liu Y, Liu XP, et al., 2019. Adaptive fuzzy funnel congestion control for TCP/AQM network. ISA Trans, 95:11-17. doi: 10.1016/j.isatra.2019.05.015
[23]Wang P, Chen H, Yang XP, et al., 2012. Design and analysis of a model predictive controller for active queue management. ISA Trans, 51(1):120-131. doi: 10.1016/j.isatra.2011.08.006
[24]Xiao LS, Wang ZX, Peng XH, 2009. Research on congestion control model and algorithm for high-speed network based on genetic neural network and intelligent PID. Proc 5th Int Conf on Wireless Communications, Networking and Mobile Computing, p.1-6. doi: 10.1109/WICOM.2009.5302733
[25]Xu S, Fei MR, Yang XH, 2016. A new scheme for network congestion control based on modified adaptive Smith predictor. Int J Simul-Syst Sci Technol, 17(28):30.1-30.6.
[26]Yazdi MN, Delavarkhalafi A, 2018. Robust stability and design of state feedback controller for straightforward active queue management. Int J Anal Appl, 16(5):654-672.
[27]Zhou C, He JW, Chen QW, 2013. A robust active queue management scheme for network congestion control. Comput Electr Eng, 39(2):285-294. doi: 10.1016/j.compeleceng.2012.11.008
Open peer comments: Debate/Discuss/Question/Opinion
<1>