CLC number: TP242
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-06-22
Cited: 0
Clicked: 1145
Citations: Bibtex RefMan EndNote GB/T7714
Jiamiao MIAO, Xiaopu WANG, Yan ZHOU, Min YE, Hongyu ZHAO, Ruoyu XU, Huihuan QIAN. Magnetically driven microrobotsmoving in a flow: a review[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(11): 1520-1540.
@article{title="Magnetically driven microrobotsmoving in a flow: a review",
author="Jiamiao MIAO, Xiaopu WANG, Yan ZHOU, Min YE, Hongyu ZHAO, Ruoyu XU, Huihuan QIAN",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="11",
pages="1520-1540",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300054"
}
%0 Journal Article
%T Magnetically driven microrobotsmoving in a flow: a review
%A Jiamiao MIAO
%A Xiaopu WANG
%A Yan ZHOU
%A Min YE
%A Hongyu ZHAO
%A Ruoyu XU
%A Huihuan QIAN
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 11
%P 1520-1540
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300054
TY - JOUR
T1 - Magnetically driven microrobotsmoving in a flow: a review
A1 - Jiamiao MIAO
A1 - Xiaopu WANG
A1 - Yan ZHOU
A1 - Min YE
A1 - Hongyu ZHAO
A1 - Ruoyu XU
A1 - Huihuan QIAN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 11
SP - 1520
EP - 1540
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300054
Abstract: Magnetically driven microrobots hold great potential to perform specific tasks more locally and less invasively in the human body. To reach the lesion area in vivo, microrobots should usually be navigated in flowing blood, which is much more complex than static liquid. Therefore, it is more challenging to design a corresponding precise control scheme. A considerable amount of work has been done regarding control of magnetic microrobots in a flow and the corresponding theories. In this paper, we review and summarize the state-of-the-art research progress concerning magnetic microrobots in blood flow, including the establishment of flow systems, dynamics modeling of motion, and control methods. In addition, current challenges and limitations are discussed. We hope this work can shed light on the efficient control of microrobots in complex flow environments and accelerate the study of microrobots for clinical use.
[1]Acemoglu A, Yesilyurt S, 2015. Effects of Poiseuille flows on swimming of magnetic helical robots in circular channels. Microfl Nanofl, 19(5):1109-1122.
[2]Adam G, Chowdhury S, Guix M, et al., 2019. Towards functional mobile microrobotic systems. Robotics, 8(3):69.
[3]Ahmed D, Sukhov A, Hauri D, et al., 2021. Bioinspired acousto-magnetic microswarm robots with upstream motility. Nat Mach Intell, 3(2):116-124.
[4]Alapan Y, Bozuyuk U, Erkoc P, et al., 2020. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Sci Robot, 5(42):eaba5726.
[5]Ang KH, Chong G, Li Y, 2005. PID control system analysis, design, and technology. IEEE Trans Contr Syst Technol, 13(4):559-576.
[6]Arcese L, Cherry A, Fruchard M, et al., 2010a. Dynamic behavior investigation for trajectory control of a microrobot in blood vessels. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.5774-5779.
[7]Arcese L, Cherry A, Fruchard M, et al., 2010b. High gain observer for backstepping control of a MRI-guided therapeutic microrobot in blood vessels. 3rd IEE RAS & EMBS Int Conf on Biomedical Robotics and Biomechatronics, p.349-354.
[8]Arcese L, Fruchard M, Ferreira A, 2012. Endovascular magnetically guided robots: navigation modeling and optimization. IEEE Trans Biomed Eng, 59(4):977-987.
[9]Bailly Y, Amirat Y, Fried G, 2011. Modeling and control of a continuum style microrobot for endovascular surgery. IEEE Trans Robot, 27(5):1024-1030.
[10]Beaver LE, Wu BZ, Das S, et al., 2022. A first-order approach to model simultaneous control of multiple microrobots. Int Conf on Manipulation, Automation and Robotics at Small Scales, p.1-7.
[11]Belharet K, Folio D, Ferreira A, 2011. Three-dimensional controlled motion of a microrobot using magnetic gradients. Adv Robot, 25(8):1069-1083.
[12]Belharet K, Folio D, Ferreira A, 2012. Control of a magnetic microrobot navigating in microfluidic arterial bifurcations through pulsatile and viscous flow. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.2559-2564.
[13]Camacho EF, Bordons C, 2007. Model Predictive Control (2nd Ed.). Springer, London, UK.
[14]Ceylan H, Giltinan J, Kozielski K, et al., 2017. Mobile microrobots for bioengineering applications. Lab Chip, 17(10):1705-1724.
[15]Ceylan H, Yasa IC, Kilic U, et al., 2019. Translational prospects of untethered medical microrobots. Prog Biomed Eng, 1(1):012002.
[16]Chen CY, Chen CF, Yi Y, et al., 2014. Construction of a microrobot system using magnetotactic bacteria for the separation of staphylococcus aureus. Biomed Microdev, 16(5):761-770.
[17]Choi IH, Lim CH, 2004. Low-velocity impact analysis of composite laminates using linearized contact law. Compos Struct, 66(1-4):125-132.
[18]Choi J, Jeong S, Cha K, et al., 2010a. Position stabilization of microrobot using pressure signal in pulsating flow of blood vessel. IEEE SENSORS, p.723-726.
[19]Choi J, Jeong S, Cha K, et al., 2010b. Positioning of microrobot in a pulsating flow using EMA system. 3rd IEEE RAS & EMBS Int Conf on Biomedical Robotics and Biomechatronics, p.588-593.
[20]Clift R, Gauvin WH, 1970. The motion of particles in turbulent gas-streams. Proc Chem, 1:14.
[21]Daems M, Peacock HM, Jones EAV, 2020. Fluid flow as a driver of embryonic morphogenesis. Development, 147(15):dev185579.
[22]Demircali AA, Varol R, Aydemir G, et al., 2021a. Longitudinal motion modeling and experimental verification of a microrobot subject to liquid laminar flow. IEEE/ASME Trans Mechatron, 26(6):2956-2966.
[23]Demircali AA, Varol R, Erkan K, et al., 2021b. Untethered microrobot motion mechanism with increased longitudinal force. J Mech Robot, 13(6):061005.
[24]Doutel E, Galindo-Rosales FJ, Campo-Deaño L, 2021. Hemodynamics challenges for the navigation of medical microbots for the treatment of CVDs. Materials, 14(23):7402.
[25]Ebrahimi N, Bi CH, Cappelleri DJ, et al., 2021. Magnetic actuation methods in bio/soft robotics. Adv Funct Mater, 31(11):2005137.
[26]Erkoc P, Yasa IC, Ceylan H, et al., 2019. Mobile microrobots for active therapeutic delivery. Adv Therap, 2(1):1800064.
[27]Feng L, Di P, Arai F, 2016. High-precision motion of magnetic microrobot with ultrasonic levitation for 3-D rotation of single oocyte. Int J Robot Res, 35(12):1445-1458.
[28]Fliess M, Join C, 2013. Model-free control. Int J Contr, 86(12):2228-2252.
[29]Go G, Yoo A, Nguyen KT, et al., 2022. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. Sci Adv, 8(46):eabq8545.
[30]Gyak KW, Jeon S, Ha L, et al., 2019. Magnetically actuated SCIN-based ceramic microrobot for guided cell delivery. Adv Healthcare Mater, 8(21):1900739.
[31]Hu B, Tian H, Qian JN, et al., 2013. A fuzzy-PID method to improve the depth control of AUV. IEEE Int Conf on Mechatronics and Automation, p.1528-1533.
[32]Hu WQ, Ishii KS, Ohta AT, 2011. Micro-assembly using optically controlled bubble microrobots. Appl Phys Lett, 99(9):094103.
[33]Ishihara K, Furukawa T, 1991. Intelligent microrobot DDS (drug delivery system) measured and controlled by ultrasonics. IEEE/RSJ Int Workshop on Intelligent Robots and Systems, p.1145-1150.
[34]Jang D, Jeong J, Song H, et al., 2019. Targeted drug delivery technology using untethered microrobots: a review. J Micromech Microeng, 29(5):053002.
[35]Jarvis BW, Poli R, Hoshiar AK, 2022. Online real-time platform for microrobot steering in a multi-bifurcation. Int Conf on Manipulation, Automation and Robotics at Small Scales, p.1-6.
[36]Ji FT, Jin DD, Wang B, et al., 2020. Light-driven hovering of a magnetic microswarm in fluid. ACS Nano, 14(6):6990-6998.
[37]Jia YJ, Zheng LS, Dong DR, et al., 2022. Robust navigation control of a microrobot with hysteresis compensation. IEEE Trans Autom Sci Eng, 19(4):3083-3092.
[38]Jiang JL, Yang ZX, Ferreira A, et al., 2022. Control and autonomy of microrobots: recent progress and perspective. Adv Intell Syst, 4(5):2100279.
[39]Kalman RE, 1960. Contributions to the theory of optimal control. Bol Soc Mat Mex, 5(2):102-119.
[40]Kehlenbeck R, Felice RD, 1999. Empirical relationships for the terminal settling velocity of spheres in cylindrical columns. Chem Eng Technol, 22(4):303-308.
[41]Khalil ISM, Magdanz V, Sanchez S, et al., 2014a. The control of self-propelled microjets inside a microchannel with time-varying flow rates. IEEE Trans Robot, 30(1):49-58.
[42]Khalil ISM, Dijkslag HC, Abelmann L, et al., 2014b. MagnetoSperm: a microrobot that navigates using weak magnetic fields. Appl Phys Lett, 104(22):223701.
[43]Khalil ISM, Abass H, Shoukry M, et al., 2016. Robust and optimal control of magnetic microparticles inside fluidic channels with time-varying flow rates. Int J Adv Robot Syst, 13(3):123.
[44]Kim H, Kim MJ, 2015. Electric field control of bacteria-powered microrobots using a static obstacle avoidance algorithm. IEEE Trans Robot, 32(1):125-137.
[45]Lauga E, Powers TR, 2009. The hydrodynamics of swimming microorganisms. Rep Prog Phys, 72(9):096601.
[46]Law J, Wang X, Luo MX, et al., 2022. Microrobotic swarms for selective embolization. Sci Adv, 8(29):eabm5752.
[47]Lee HS, Go G, Choi E, et al., 2020. Medical microrobot-wireless manipulation of a drug delivery carrier through an external ultrasonic actuation: preliminary results. Int J Contr Autom Syst, 18(1):175-185.
[48]Li DF, Liu C, Yang YY, et al., 2020. Micro-rocket robot with all-optic actuating and tracking in blood. Light Sci Appl, 9(1):84.
[49]Li DH, Choi H, Cho S, et al., 2015. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy. Biotechnol Bioeng, 112(8):1623-1631.
[50]Li JY, Li XJ, Luo T, et al., 2018. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci Robot, 3(19):eaat8829.
[51]Li YB, Song SX, 2012. A survey of control algorithms for quadrotor unmanned helicopter. IEEE 5th Int Conf on Advanced Computational Intelligence, p.365-369.
[52]Li ZY, Li CY, Dong LX, et al., 2021. A review of microrobot’s system: towards system integration for autonomous actuation in vivo. Micromachines, 12(10):1249.
[53]Liu JR, Yu SM, Xu BR, et al., 2021. Magnetically propelled soft microrobot navigating through constricted microchannels. Appl Mater Today, 25:101237.
[54]Manamanchaiyaporn L, Xu TT, Wu XY, 2020. Magnetic soft robot with the triangular head–tail morphology inspired by lateral undulation. IEEE/ASME Trans Mechatron, 25(6):2688-2699.
[55]Martel S, 2012. Bacterial microsystems and microrobots. Biomed Microdev, 14(6):1033-1045.
[56]Martel S, Mathieu JB, Felfoul O, et al., 2007. Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett, 90(11):114105.
[57]Mathieu JB, Martel S, 2006. Magnetic steering of iron oxide microparticles using propulsion gradient coils in MRI. Int Conf of the IEEE Engineering in Medicine and Biology Society, p.472-475.
[58]Mathieu JB, Martel S, 2010. Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI scanner. Magn Reson Med, 63(5):1336-1345.
[59]Meng K, Jia YJ, Yang H, et al., 2020. Motion planning and robust control for the endovascular navigation of a microrobot. IEEE Trans Ind Inform, 16(7):4557-4566.
[60]Moo JGS, Mayorga-Martinez CC, Wang H, et al., 2017. Nano/microrobots meet electrochemistry. Adv Funct Mater, 27(12):1604759.
[61]Naidu DS, 2002. Optimal Control Systems. CRC Press, Boca Raton, USA.
[62]Nelson BJ, Kaliakatsos IK, Abbott JJ, 2010. Microrobots for minimally invasive medicine. Ann Rev Biomed Eng, 12(1):55-85.
[63]Nguyen-Van A, Schulze HJ, Kmet S, 1994. A simple algorithm for the calculation of the terminal velocity of a single solid sphere in water. Int J Miner Process, 41(3-4):305-310.
[64]Oral CM, Pumera M, 2023. In vivo applications of micro/nanorobots. Nanoscale, 15(19):8491-8507.
[65]Özahi E, Çarpınlıoğlu MÖ, 2015. Definition of sub-classes in sinusoidal pulsatile air flow at onset of transition to turbulence in view of velocity and frictional field analyses. Measurement, 64:94-104.
[66]Palagi S, Singh DP, Fischer P, 2019. Light-controlled micromotors and soft microrobots. Adv Opt Mater, 7(16):1900370.
[67]Park SJ, Park SH, Cho S, et al., 2013. New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci Rep, 3(1):3394.
[68]Pawashe C, Floyd S, Sitti M, 2009. Multiple magnetic microrobot control using electrostatic anchoring. Appl Phys Lett, 94(16):164108.
[69]Peyer KE, Zhang L, Nelson BJ, 2013. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 5(4):1259-1272.
[70]Pfitzner J, 1976. Poiseuille and his law. Anaesthesia, 31(2):273-275.
[71]Pršić D, Nedić N, Stojanović V, 2017. A nature inspired optimal control of pneumatic-driven parallel robot platform. Proc Inst Mech Eng Part C J Mech Eng Sci, 231(1):59-71.
[72]Purcell EM, 1977. Life at low Reynolds number. Am J phys, 45(1):3-11.
[73]Reis MNE, Hanriot S, 2017. Incompressible pulsating flow for low Reynolds numbers in orifice plates. Flow Meas Instrum, 54:146-157.
[74]Sadelli L, Fruchard M, Ferreira A, 2017. 2D observer-based control of a vascular microrobot. IEEE Trans Autom Contr, 62(5):2194-2206.
[75]Sanchez S, Solovev AA, Harazim SM, et al., 2011. Microbots swimming in the flowing streams of microfluidic channels. J Am Chem Soc, 133(4):701-703.
[76]Schiller L, Naumann A, 1933. Drag coefficient for spherical shape. VDI Zeits, 13:318.
[77]Servant A, Qiu FM, Mazza M, et al., 2015. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv Mater, 27(19):2981-2988.
[78]Sitti M, Wiersma DS, 2020. Pros and cons: magnetic versus optical microrobots. Adv Mater, 32(20):1906766.
[79]Sitti M, Ceylan H, Hu WQ, et al., 2015. Biomedical applications of untethered mobile milli/microrobots. Proc IEEE, 103(2):205-224.
[80]Tamaz S, Gourdeau R, Chanu A, et al., 2008. Real-time MRI-based control of a ferromagnetic core for endovascular navigation. IEEE Trans Biomed Eng, 55(7):1854-1863.
[81]Tan TM, Sun CT, 1985. Use of statical indentation laws in the impact analysis of laminated composite plates. J Appl Mech, 52(1):6-12.
[82]Tran-Cong S, Gay M, Michaelides EE, 2004. Drag coefficients of irregularly shaped particles. Powder Technol, 139(1):21-32.
[83]Ullrich F, Bergeles C, Pokki J, et al., 2013. Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci, 54(4):2853-2863.
[84]Wang B, Chan KF, Yu JF, et al., 2018. Reconfigurable swarms of ferromagnetic colloids for enhanced local hyperthermia. Adv Funct Mater, 28(25):1705701.
[85]Wang B, Kostarelos K, Nelson BJ, et al., 2021. Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv Mater, 33(4):2002047.
[86]Wang QQ, Zhang L, 2021. External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano, 15(1):149-174.
[87]Wang QQ, Chan KF, Schweizer K, et al., 2021. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci Adv, 7(9):eabe5914.
[88]Wang QQ, Jin DD, Wang B, et al., 2022. Reconfigurable magnetic microswarm for accelerating TPA-mediated thrombolysis under ultrasound imaging. IEEE/ASME Trans Mechatron, 27(4):2267-2277.
[89]Wang XP, Hu CZ, Pané S, et al., 2022. Dynamic modeling of magnetic helical microrobots. IEEE Robot Autom Lett, 7(2):1682-1688.
[90]White FM, Majdalani J, 2006. Viscous Fluid Flow. McGraw-Hill, New York, USA.
[91]Wu ZH, Zhang YT, Ai NN, et al., 2022. Magnetic mobile microrobots for upstream and downstream navigation in biofluids with variable flow rate. Adv Intell Syst, 4(7):2100266.
[92]Xu HF, Medina-Sánchez M, Maitz MF, et al., 2020. Sperm micromotors for cargo delivery through flowing blood. ACS Nano, 14(3):2982-2993.
[93]Xu MH, Wang LV, 2006. Photoacoustic imaging in biomedicine. Rev Sci Instrum, 77(4):041101.
[94]Xu ZC, Xu QS, 2022. Collective behaviors of magnetic microparticle swarms: from dexterous tentacles to reconfigurable carpets. ACS Nano, 16(9):13728-13739.
[95]Yan Y, Jing WM, Mehrmohammadi M, 2020. Photoacoustic imaging to track magnetic-manipulated micro-robots in deep tissue. Sensors, 20(10):2816.
[96]Yang LD, Jiang JL, Gao XJ, et al., 2022. Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning. Nat Mach Intell, 4(5):480-493.
[97]Yang SH, Wang QQ, Jin DD, et al., 2022. Probing fast transformation of magnetic colloidal microswarms in complex fluids. ACS Nano, 16(11):19025-19037.
[98]Yu JF, Jin DD, Chan KF, et al., 2019. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun, 10(1):5631.
[99]Yue HE, Chang XC, Liu JM, et al., 2022. Wheel-like magnetic-driven microswarm with a band-aid imitation for patching up microscale intestinal perforation. ACS Appl Mater Interf, 14(7):8743-8752.
[100]Zhang HH, Xu BR, Ouyang Y, et al., 2022. Shape memory alloy helical microrobots with transformable capability towards vascular occlusion treatment. Research, 2022:9842752.
[101]Zhang HY, Li ZS, Gao CY, et al., 2021. Dual-responsive biohybrid neutrobots for active target delivery. Sci Robot, 6(52):eaaz9519.
[102]Zhang XJ, 2013. van der Waals forces. In: Wang QJ, Chung YW (Eds.), Encyclopedia of Tribology. Springer, New York, USA, p.3945-3947.
[103]Zhang ZG, Yamashita N, Gondo M, et al., 2008. Electrostatically actuated robotic fish: design and control for high-mobility open-loop swimming. IEEE Trans Robot, 24(1):118-129.
[104]Zhao C, Lu XL, Wei Y, et al., 2022. Fast locomotion of microrobot swarms with ultrasonic stimuli in large scale. 15th Int Conf on Intelligent Robotics and Applications, p.581-589.
Open peer comments: Debate/Discuss/Question/Opinion
<1>