Full Text:   <1374>

Summary:  <418>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-10-27

Cited: 0

Clicked: 1184

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Gaosheng Li

https://orcid.org/0000-0001-5230-1428

Shichao ZHU

https://orcid.org/0000-0002-1023-2927

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2023 Vol.24 No.10 P.1504-1512

http://doi.org/10.1631/FITEE.2300253


A low-profile dual-polarization programmable dual-beam scanning antenna array


Author(s):  Shichao ZHU, Yuanfan NING, Hongbo CHU, Pei XIAO, Gaosheng LI

Affiliation(s):  College of Electrical and Information Engineering, Hunan University, Changsha 410082, China

Corresponding email(s):   Gaosheng7070@vip.163.com

Key Words: 


Share this article to: More <<< Previous Article|

Shichao ZHU, Yuanfan NING, Hongbo CHU, Pei XIAO, Gaosheng LI. A low-profile dual-polarization programmable dual-beam scanning antenna array[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(10): 1504-1512.

@article{title="A low-profile dual-polarization programmable dual-beam scanning antenna array",
author="Shichao ZHU, Yuanfan NING, Hongbo CHU, Pei XIAO, Gaosheng LI",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="10",
pages="1504-1512",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300253"
}

%0 Journal Article
%T A low-profile dual-polarization programmable dual-beam scanning antenna array
%A Shichao ZHU
%A Yuanfan NING
%A Hongbo CHU
%A Pei XIAO
%A Gaosheng LI
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 10
%P 1504-1512
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300253

TY - JOUR
T1 - A low-profile dual-polarization programmable dual-beam scanning antenna array
A1 - Shichao ZHU
A1 - Yuanfan NING
A1 - Hongbo CHU
A1 - Pei XIAO
A1 - Gaosheng LI
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 10
SP - 1504
EP - 1512
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300253


Abstract: 
A low-profile dual-polarization dual-beam scanning antenna array based on holographic control theory is presented in this paper. The radiating elements are ingeniously designed to achieve reconfigurable polarization and modulation of the radiation phase by controlling the state of the PIN diodes integrated on each element. A 72-channel series-parallel equal-amplitude and in-phase feeding network is integrated with the radiating array to achieve low-profile characteristics. The two-dimensional (2D) dynamic and accurate deflection of the beam is achieved by a designed direct current (DC) bias circuit that digitally encodes the antenna array using the single-chip microcontroller. A 2-element subarray and a 6×12 array have been fabricated and the digitally controllable radiation pattern of this antenna system has been experimentally verified. The antenna system can achieve the beam scanning of -30° to 30° with a step-scan of 5° at 11 GHz. The proposed antenna system is characterized by low profile, low cost, easy integration, and accurate beam steering, and holds broad application prospects in radar systems, smart antennas, and other fields.

一种低剖面双极化可编程双波束扫描天线阵列

朱世超,宁远帆,褚宏波,肖培,李高升
湖南大学电气与信息工程学院,中国长沙市,410082
摘要:提出一种基于全息控制理论的低剖面双极化双波束扫描天线阵列。巧妙设计辐射单元,以通过控制集成在每个单元上的PIN二极管的状态实现可重构极化和辐射相位调制。将一个72通道的串并联等幅同相馈电网络与辐射阵列集成,实现阵列的低剖面特性。通过设计直流偏置电路,利用单片机对天线阵列数字编码,实现波束的二维动态精确偏转。加工制作了一个2单元子阵列和一个6×12阵列,并对该天线系统的数字可控辐射方向图特性进行实验验证。该天线系统可以在11 GHz实现−30°至30°的波束扫描,步进扫描角为5°。该天线系统具有体积小、成本低、易于集成、波束控制准确等特点,在雷达系统、智能天线等领域具有广阔的应用前景。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bai XD, Kong FW, Sun YT, et al., 2020. High-efficiency transmissive programmable metasurface for multimode OAM generation. Adv Opt Mater, 8(17):2000570.

[2]Bildik S, Dieter S, Fritzsch C, et al., 2015. Reconfigurable folded reflectarray antenna based upon liquid crystal technology. IEEE Trans Antenn Propag, 63(1):122-132.

[3]Dai JY, Zhao J, Cheng Q, et al., 2018. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci Appl, 7(1):90.

[4]Deng RQ, Di BY, Zhang HL, et al., 2021. Reconfigurable holographic surface: holographic beamforming for metasurface-aided wireless communications. IEEE Trans Veh Technol, 70(6):6255-6259.

[5]Gao S, Yang J, Wang P, et al., 2018. Tunable liquid crystal based phase shifter with a slot unit cell for reconfigurable reflectarrays in F-band. Appl Sci, 8(12):2528.

[6]Geng YJ, Wang JH, Li YJ, et al., 2019. Radiation pattern-reconfigurable leaky-wave antenna for fixed-frequency beam steering based on substrate-integrated waveguide. IEEE Antenn Wirel Propag Lett, 18(2):387-391.

[7]Han JQ, Li L, Liu GY, et al., 2019. A wideband 1 bit 12×12 reconfigurable beam-scanning reflectarray: design, fabrication, and measurement. IEEE Antenn Wirel Propag Lett, 18(6):1268-1272.

[8]Hu J, Hao ZC, Wang Y, 2018. A wideband array antenna with 1-bit digital-controllable radiation beams. IEEE Access, 6:10858-10866.

[9]Hum SV, Perruisseau-Carrier J, 2014. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE Trans Antenn Propag, 62(1):183-198.

[10]Iqbal S, Liu S, Wu RY, et al., 2018. Polarization-selective dual-band digital coding metasurface for controls of transmitted waves. J Phys D Appl Phys, 51(28):285103.

[11]Johnson MC, Brunton SL, Kundtz NB, et al., 2015. Sidelobe canceling for reconfigurable holographic metamaterial antenna. IEEE Trans Antenn Propag, 63(4):1881-1886.

[12]Latha T, Ram G, Kumar GA, et al., 2021. Review on ultra-wideband phased array antennas. IEEE Access, 9:129742-129755.

[13]Li WH, Qiu TS, Wang JF, et al., 2021. Programmable coding metasurface reflector for reconfigurable multibeam antenna application. IEEE Trans Antenn Propag, 69(1):296-301.

[14]Lin MT, Huang XJ, Deng BW, et al., 2020. A high-efficiency reconfigurable element for dynamic metasurface antenna. IEEE Access, 8:87446-87455.

[15]Liu GY, Li L, Han JQ, et al., 2020a. Frequency-domain and spatial-domain reconfigurable metasurface. ACS Appl Mater Interf, 12(20):23554-23564.

[16]Liu GY, Liu HX, Han JQ, et al., 2020b. Reconfigurable metasurface with polarization-independent manipulation for reflection and transmission wavefronts. J Phys D Appl Phys, 53(4):045107.

[17]Ma C, Li H, Zhang B, et al., 2021. Implementation of a 2-D reconfigurable fresnel-zone-plate antenna. IEEE Trans Antenn Propag, 69(1):520-525.

[18]Mirmozafari M, Zhang ZT, Gao M, et al., 2021. Mechanically reconfigurable, beam-scanning reflectarray and transmitarray antennas: a review. Appl Sci, 11(15):6890.

[19]Nguyen BD, Pichot C, 2019. Unit-cell loaded with PIN diodes for 1-bit linearly polarized reconfigurable transmitarrays. IEEE Antenn Wirel Propag Lett, 18(1):98-102.

[20]Niu LY, Zhang HC, He PH, et al., 2021. Dual-band and dual-polarized programmable metasurface unit with independent channels. J Phys D Appl Phys, 54(14):145109.

[21]Pan SP, Lin MT, Xu M, et al., 2022. A low-profile programmable beam scanning holographic array antenna without phase shifters. IEEE Int Things J, 9(11):8838-8851.

[22]Rocca P, Oliveri G, Mailloux RJ, et al., 2016. Unconventional phased array architectures and design methodologies—a review. Proc IEEE, 104(3):544-560.

[23]Wan X, Qi MQ, Chen TY, et al., 2016. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface. Sci Rep, 6(1):20663.

[24]Wan X, Xiao Q, Zhang YZ, et al., 2021. Reconfigurable sum and difference beams based on a binary programmable metasurface. IEEE Antenn Wirel Propag Lett, 20(3):381-385.

[25]Wang ZL, Ge YH, Pu JX, et al., 2020. 1 bit electronically reconfigurable folded reflectarray antenna based on p-i-n diodes for wide-angle beam-scanning applications. IEEE Trans Antenn Propag, 68(9):6806-6810.

[26]Wang ZY, Pan XT, Yang F, et al., 2020. Real-time mode switching and beam scanning of high-gain OAM waves using a 1-bit reconfigurable reflectarray antenna. Electronics, 9(12):2181.

[27]Wu RY, Bao L, Wu LW, et al., 2020. Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning. Sci China Phys Mech Astron, 63(8):284211.

[28]Xu M, Liu JB, Pan SP, et al., 2022. Low profile dynamic patch antenna array with high-intensity radiation fields (HIRF) protection. IEEE Trans Veh Technol, 71(10):10527-10542.

[29]Xu P, Jiang WX, Cai X, et al., 2020. An integrated coding-metasurface-based array antenna. IEEE Trans Antenn Propag, 68(2):891-899.

[30]Yang HH, Yang F, Cao XY, et al., 2017. A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku-band. IEEE Trans Antenn Propag, 65(6):3024-3032.

[31]Yang HN, Cao XY, Gao J, et al., 2020. A wide-beam antenna for wide-angle scanning linear phased arrays. IEEE Antenn Wirel Propag Lett, 19(12):2122-2126.

[32]Yang X, Xu SS, Yang F, et al., 2018. A mechanically reconfigurable reflectarray with slotted patches of tunable height. IEEE Antenn Wirel Propag Lett, 17(4):555-558.

[33]Zhang XG, Jiang WX, Tian HW, et al., 2020. Pattern-reconfigurable planar array antenna characterized by digital coding method. IEEE Trans Antenn Propag, 68(2):‍1170-1175.

[34]Zhao J, Yang X, Dai JY, et al., 2019. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Nat Sci Rev, 6(2):231-238.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE