CLC number:
On-line Access: 2025-01-24
Received: 2024-05-10
Revision Accepted: 2024-11-07
Crosschecked: 2025-01-24
Cited: 0
Clicked: 78
Citations: Bibtex RefMan EndNote GB/T7714
Yu GAN, Lin LIU, Jian BAI, Hongfu MENG. An orbital angular momentum multiplexing communication system at 28 GHz with an active uniform circular array[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(12): 1759-1768.
@article{title="An orbital angular momentum multiplexing communication system at 28 GHz with an active uniform circular array",
author="Yu GAN, Lin LIU, Jian BAI, Hongfu MENG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="12",
pages="1759-1768",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400376"
}
%0 Journal Article
%T An orbital angular momentum multiplexing communication system at 28 GHz with an active uniform circular array
%A Yu GAN
%A Lin LIU
%A Jian BAI
%A Hongfu MENG
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 12
%P 1759-1768
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400376
TY - JOUR
T1 - An orbital angular momentum multiplexing communication system at 28 GHz with an active uniform circular array
A1 - Yu GAN
A1 - Lin LIU
A1 - Jian BAI
A1 - Hongfu MENG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 12
SP - 1759
EP - 1768
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400376
Abstract: This paper presents an orbital angular momentum (OAM) multiplexing communication system employing active uniform circular arrays (UCAs) to achieve simultaneous five-mode transmission. At 28 GHz, dual-loop UCAs are implemented in the transceiver, in which four UCAs comprising multiple 4×4 microstrip subarrays are placed concentrically. The next stage of each channel is an active transmitter and receiver (T/R) module, which is composed of a beamformer integrated circuit (IC) and a feed network. Additionally, a central antenna with the ability to transmit mode 0 is integrated. Similar to the active phased array system, both the receiving and transmitting modes are reconfigurable by adjusting the phase shifter. According to specific requirements, the modes of different UCAs can be assigned arbitrarily, and the receiving and transmitting states of each UCA can be configured independently. In this study, a 6-m OAM link with data transmission rate of 3 Gbit/s has been successfully implemented.
[1]Cheng Q, Jin S, Cui TJ, 2023. Reconfigurable intelligent surfaces for wireless communications. Front Inform Technol Electron Eng, 24(12):1665-1668.
[2]Gesbert D, Shafi M, Shiu DS, et al., 2003. From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE J Sel Areas Commun, 21(3):281-302.
[3]Gibson G, Courtial J, Padgett MJ, et al., 2004. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express, 12(22):5448-5456.
[4]Guo ZG, Yang GM, Jin YQ, 2018. Circularly polarised OAM antenna using an aperture-coupled uniform circular array. IET Microw Antenn Propag, 12(9):1594-1600.
[5]Kang L, Li H, Zhou JZ, et al., 2019. A mode-reconfigurable orbital angular momentum antenna with simplified feeding scheme. IEEE Trans Antenn Propag, 67(7):4866-4871.
[6]Lee D, Sasaki H, Fukumoto H, et al., 2018. An experimental demonstration of 28 GHz band wireless OAM-MIMO (orbital angular momentum multi-input and multi-output) multiplexing. Proc 87th Vehicular Technology Conf, p.1-5.
[7]Nguyen T, Hirabe M, Miyamoto H, et al., 2018. An experimental study of high-capacity link using orbital angular momentum mode multiplexing in E-band. Proc Int Symp on Antennas and Propagation, p.1-2.
[8]Qiu LJ, Li XP, Qi ZH, et al., 2023. Wideband circular-polarized transmitarray for generating a high-purity vortex beam. Front Inform Technol Electron Eng, 24(6):927-934.
[9]Sasaki H, Yagi Y, Yamada T, et al., 2019. Field experimental demonstration on OAM-MIMO wireless transmission on 28 GHz band. Proc IEEE Globecom Workshops, p.1-4.
[10]Tamburini F, Mari E, Parisi G, et al., 2015. Tripling the capacity of a point-to-point radio link by using electromagnetic vortices. Radio Sci, 50(6):501-508.
[11]Thidé B, Then H, Sjöholm J, et al., 2007. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys Rev Lett, 99(8):087701.
[12]Tian H, Liu ZQ, Xi W, et al., 2016. Beam axis detection and alignment for uniform circular array-based orbital angular momentum wireless communication. IET Commun, 10(1):44-49.
[13]Yan Y, Xie GD, Lavery MPJ, et al., 2014. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun, 5(1):4876.
[14]Yan Y, Li L, Zhao Z, et al., 2016. 32-Gbit/s 60-GHz millimeter-wave wireless communication using orbital angular momentum and polarization multiplexing. Proc IEEE Int Conf on Communications, p.1-6.
[15]Yang LJ, Sun S, Sha WEI, et al., 2023. Multi-feed multi-mode metasurface for independent orbital angular momentum communication in dual polarization. Front Inform Technol Electron Eng, 24(12):1776-1790.
[16]Yousif BB, Elsayed EE, Alzalabani MM, 2019. Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system. Opt Commun, 436:197-208.
[17]Zhang Q, Xiong XS, Li Q, et al., 2021. Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems. Front Inform Technol Electron Eng, 22(4):527-547.
Open peer comments: Debate/Discuss/Question/Opinion
<1>