
CLC number: TN957
On-line Access: 2026-01-08
Received: 2025-04-29
Revision Accepted: 2025-09-22
Crosschecked: 2026-01-08
Cited: 0
Clicked: 661
Citations: Bibtex RefMan EndNote GB/T7714
Ruofeng YU, Chenyang LUO, Mengdi BAI, Shangqu YAN, Wei YANG, Yaowen FU. Waveform design based on mutual information upper bound for joint detection and estimation[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(11): 2324-2337.
@article{title="Waveform design based on mutual information upper bound for joint detection and estimation",
author="Ruofeng YU, Chenyang LUO, Mengdi BAI, Shangqu YAN, Wei YANG, Yaowen FU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="11",
pages="2324-2337",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500276"
}
%0 Journal Article
%T Waveform design based on mutual information upper bound for joint detection and estimation
%A Ruofeng YU
%A Chenyang LUO
%A Mengdi BAI
%A Shangqu YAN
%A Wei YANG
%A Yaowen FU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 11
%P 2324-2337
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500276
TY - JOUR
T1 - Waveform design based on mutual information upper bound for joint detection and estimation
A1 - Ruofeng YU
A1 - Chenyang LUO
A1 - Mengdi BAI
A1 - Shangqu YAN
A1 - Wei YANG
A1 - Yaowen FU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 11
SP - 2324
EP - 2337
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500276
Abstract: Information-theoretic principles provide a rigorous foundation for adaptive radar waveform design in contested and dynamically varying environments. This paper addresses the joint optimization of constant modulus waveforms to enhance both target detection and parameter estimation concurrently. A unified design framework is developed by maximizing a mutual information upper bound (MIUB), which intrinsically reconciles the tradeoff between detection sensitivity and estimation accuracy without heuristic weighting. Realistic, potentially non-Gaussian statistics of target and clutter returns are modeled using Gaussian mixture distributions (GMDs), enabling tractable closed-form approximations of the MIUB’s Kullback–Leibler divergence and mutual information components. To tackle the ensuing non-convex optimization, a tailored metaheuristic phase-coded dream optimization algorithm (PC-DOA) is proposed, incorporating hybrid initialization and adaptive exploration–exploitation mechanisms for efficient phase-space search. Numerical results substantiate the proposed approach’s superiority in achieving favorable detection estimation trade-offs over existing benchmarks.
[1]Bell MR, 1993. Information theory and radar waveform design. IEEE Trans Inform Theory, 39(5):1578-1597.
[2]Blacknell D, 2000. Target detection in correlated SAR clutter. IEE Proc Radar Son Nav, 147(1):9.
[3]Chen XX, Wu H, Cheng YQ, et al., 2023. Joint design of transmit sequence and receive filter based on Riemannian manifold of Gaussian mixture distribution for MIMO radar. IEEE Trans Geosci Remote Sens, 61:5102213.
[4]DeLong D, Hofstetter E, 1970. Optimum radar signal-filter pairs in a cluttered environment. IEEE Trans Inform Theory, 16(1):89-90.
[5]Goldberger, Gordon, Greenspan, 2003. An efficient image similarity measure based on approximations of KL-divergence between two Gaussian mixtures. Proc 9th IEEE Int Conf on Computer Vision, p.487-493.
[6]Gu YJ, Goodman NA, 2019. Information-theoretic waveform design for Gaussian mixture radar target profiling. IEEE Trans Aerosp Electron Syst, 55(3):1528-1536.
[7]Guerci JR, Guerci RM, Ranagaswamy M, et al., 2014. CoFAR: cognitive fully adaptive radar. Proc IEEE Radar Conf, p.984-989.
[8]Gui RH, Wang WQ, Cui C, et al., 2018. Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis. IEEE Trans Signal Process, 66(1):200-214.
[9]Hao TD, Cui C, Gong Y, 2019. Efficient waveform design method for target estimation under the detection and peak-to-average power ratio constraints in cognitive radar. IEEE Access, 7:21300-21309.
[10]Haykin S, 2006. Cognitive radar: a way of the future. IEEE Signal Process Mag, 23(1):30-40.
[11]Idriss Z, Raj RG, Narayanan RM, 2021. Waveform optimization for multistatic radar imaging using mutual information. IEEE Trans Aerosp Electron Syst, 57(4):2410-2425.
[12]Jiu B, Liu HW, Zhang L, et al., 2015. Wideband cognitive radar waveform optimization for joint target radar signature estimation and target detection. IEEE Trans Aerosp Electron Syst, 51(2):1530-1546.
[13]Levanon N, Mozeson E, 2004. Radar Signals. John Wiley & Sons, Inc., New York, USA.
[14]Poole B, Ozair S, Van Den Oord A, et al., 2019. On variational bounds of mutual information. Proc 36th Int Conf on Machine Learning, p.5171-5180.
[15]Romero RA, Bae J, Goodman NA, 2011. Theory and application of SNR and mutual information matched illumination waveforms. IEEE Trans Aerosp Electron Syst, 47(2):912-927.
[16]Shen TL, Lu JB, Zhang YL, et al., 2024. Waveform design of cognitive MIMO radar with multiple targets and multiple criterias. 6th Int Conf on Information Science, Electrical and Automation Engineering, 13275:1327510.
[17]Skolnik M, 2008. An Introduction and Overview of Radar. McGraw-Hill, New York, USA, p.1.
[18]Tang B, Naghsh MM, Tang J, 2015. Relative entropy-based waveform design for MIMO radar detection in the presence of clutter and interference. IEEE Trans Signal Process, 63(14):3783-3796.
[19]Tang B, Zhang Y, Tang J, 2018. An efficient minorization maximization approach for MIMO radar waveform optimization via relative entropy. IEEE Trans Signal Process, 66(2):400-411.
[20]Thornton CE, Kozy MA, Buehrer RM, et al., 2020. Deep reinforcement learning control for radar detection and tracking in congested spectral environments. IEEE Trans Cogn Commun Netw, 6(4):1335-1349.
[21]van der Werf I, Hendriks RC, Heusdens R, et al., 2023. Transmit waveform design based on the Cramér-Rao lower bound. Proc 9th IEEE Int Workshop on Computational Advances in Multi-Sensor Adaptive Processing, p.166-170.
[22]Xiao Y, Hu XX, 2022. Waveform design for multi-target detection based on two-stage information criterion. Entropy, 24(8):1075.
[23]Xu Z, Xie Z, Fan CY, et al., 2022. Probabilistically robust radar waveform design for extended target detection. IEEE Trans Signal Process, 70:4212-4224.
[24]Xu Z, Tang B, Ai WH, et al., 2025a. Radar transceiver design for extended targets based on optimal linear detector. IEEE Trans Aerosp Electron Syst, 61(3):6070-6082.
[25]Xu Z, Tang B, Ai WH, et al., 2025b. Relative entropy based jamming signal design against radar target detection. IEEE Trans Signal Process, 73:1200-1215.
[26]Yang C, Yang W, Qiu XF, et al., 2023. Cognitive radar waveform design method under the joint constraints of transmit energy and spectrum bandwidth. Remote Sens, 15(21):5187.
[27]Yu RF, Fu YW, Yang W, et al., 2024. Waveform design for target information maximization over a complex circle manifold. Remote Sens, 16(4):645.
[28]Zhu ZH, Kay S, Raghavan RS, 2017. Information-theoretic optimal radar waveform design. IEEE Signal Process Lett, 24(3):274-278.
Open peer comments: Debate/Discuss/Question/Opinion
<1>