Full Text:   <315>

Summary:  <137>

CLC number: TN957

On-line Access: 2026-01-08

Received: 2025-04-29

Revision Accepted: 2025-09-22

Crosschecked: 2026-01-08

Cited: 0

Clicked: 661

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ruofeng YU

https://orcid.org/0000-0002-5189-736X

Yaowen FU

https://orcid.org/0000-0001-7081-266X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.11 P.2324-2337

http://doi.org/10.1631/FITEE.2500276


Waveform design based on mutual information upper bound for joint detection and estimation


Author(s):  Ruofeng YU, Chenyang LUO, Mengdi BAI, Shangqu YAN, Wei YANG, Yaowen FU

Affiliation(s):  College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

Corresponding email(s):   fuyaowen@nudt.edu.cn

Key Words:  Radar waveform design, Mutual information upper bound, Target detection, Parameter estimation, Constant modulus constraint


Ruofeng YU, Chenyang LUO, Mengdi BAI, Shangqu YAN, Wei YANG, Yaowen FU. Waveform design based on mutual information upper bound for joint detection and estimation[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(11): 2324-2337.

@article{title="Waveform design based on mutual information upper bound for joint detection and estimation",
author="Ruofeng YU, Chenyang LUO, Mengdi BAI, Shangqu YAN, Wei YANG, Yaowen FU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="11",
pages="2324-2337",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500276"
}

%0 Journal Article
%T Waveform design based on mutual information upper bound for joint detection and estimation
%A Ruofeng YU
%A Chenyang LUO
%A Mengdi BAI
%A Shangqu YAN
%A Wei YANG
%A Yaowen FU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 11
%P 2324-2337
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500276

TY - JOUR
T1 - Waveform design based on mutual information upper bound for joint detection and estimation
A1 - Ruofeng YU
A1 - Chenyang LUO
A1 - Mengdi BAI
A1 - Shangqu YAN
A1 - Wei YANG
A1 - Yaowen FU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 11
SP - 2324
EP - 2337
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500276


Abstract: 
Information-theoretic principles provide a rigorous foundation for adaptive radar waveform design in contested and dynamically varying environments. This paper addresses the joint optimization of constant modulus waveforms to enhance both target detection and parameter estimation concurrently. A unified design framework is developed by maximizing a mutual information upper bound (MIUB), which intrinsically reconciles the tradeoff between detection sensitivity and estimation accuracy without heuristic weighting. Realistic, potentially non-Gaussian statistics of target and clutter returns are modeled using Gaussian mixture distributions (GMDs), enabling tractable closed-form approximations of the MIUB’s Kullback–Leibler divergence and mutual information components. To tackle the ensuing non-convex optimization, a tailored metaheuristic phase-coded dream optimization algorithm (PC-DOA) is proposed, incorporating hybrid initialization and adaptive exploration–exploitation mechanisms for efficient phase-space search. Numerical results substantiate the proposed approach’s superiority in achieving favorable detection estimation trade-offs over existing benchmarks.

基于互信息上界的联合检测与估计波形设计

余若峰,罗晨扬,白梦迪,颜上取,杨威,付耀文
国防科技大电子科学学院,中国长沙市,410073
摘要:信息论原理为在竞争激烈且动态变化的环境中进行自适应雷达波形设计提供了严谨的理论基础。本文致力于恒模波形的联合优化,旨在同时提升目标检测能力与参数估计精度。通过最大化互信息上界,开发了一种统一设计框架,该框架可内在地协调权衡检测灵敏度与估计精度而无需采用启发式加权因子。使用高斯混合分布对目标和杂波的潜在非高斯统计特性进行建模,使互信息上界中Kullback-Leibler散度与互信息成分的可处理闭式近似成为可能。为求解由此产生的非凸优化问题,提出一种定制的元启发式相位编码梦优化算法(PC-DOA),该算法融合了混合初始化策略与自适应探索-开发机制,以实现高效的相空间搜索。数值结果证实,相较于现有基准方法,所提方案在实现更优的检测-估计权衡方面具有显著优越性。

关键词:雷达波形设计;互信息上界;目标检测;参数估计;常模约束

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bell MR, 1993. Information theory and radar waveform design. IEEE Trans Inform Theory, 39(5):1578-1597.

[2]Blacknell D, 2000. Target detection in correlated SAR clutter. IEE Proc Radar Son Nav, 147(1):9.

[3]Chen XX, Wu H, Cheng YQ, et al., 2023. Joint design of transmit sequence and receive filter based on Riemannian manifold of Gaussian mixture distribution for MIMO radar. IEEE Trans Geosci Remote Sens, 61:5102213.

[4]DeLong D, Hofstetter E, 1970. Optimum radar signal-filter pairs in a cluttered environment. IEEE Trans Inform Theory, 16(1):89-90.

[5]Goldberger, Gordon, Greenspan, 2003. An efficient image similarity measure based on approximations of KL-divergence between two Gaussian mixtures. Proc 9th IEEE Int Conf on Computer Vision, p.487-493.

[6]Gu YJ, Goodman NA, 2019. Information-theoretic waveform design for Gaussian mixture radar target profiling. IEEE Trans Aerosp Electron Syst, 55(3):1528-1536.

[7]Guerci JR, Guerci RM, Ranagaswamy M, et al., 2014. CoFAR: cognitive fully adaptive radar. Proc IEEE Radar Conf, p.984-989.

[8]Gui RH, Wang WQ, Cui C, et al., 2018. Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis. IEEE Trans Signal Process, 66(1):200-214.

[9]Hao TD, Cui C, Gong Y, 2019. Efficient waveform design method for target estimation under the detection and peak-to-average power ratio constraints in cognitive radar. IEEE Access, 7:21300-21309.

[10]Haykin S, 2006. Cognitive radar: a way of the future. IEEE Signal Process Mag, 23(1):30-40.

[11]Idriss Z, Raj RG, Narayanan RM, 2021. Waveform optimization for multistatic radar imaging using mutual information. IEEE Trans Aerosp Electron Syst, 57(4):2410-2425.

[12]Jiu B, Liu HW, Zhang L, et al., 2015. Wideband cognitive radar waveform optimization for joint target radar signature estimation and target detection. IEEE Trans Aerosp Electron Syst, 51(2):1530-1546.

[13]Levanon N, Mozeson E, 2004. Radar Signals. John Wiley & Sons, Inc., New York, USA.

[14]Poole B, Ozair S, Van Den Oord A, et al., 2019. On variational bounds of mutual information. Proc 36th Int Conf on Machine Learning, p.5171-5180.

[15]Romero RA, Bae J, Goodman NA, 2011. Theory and application of SNR and mutual information matched illumination waveforms. IEEE Trans Aerosp Electron Syst, 47(2):912-927.

[16]Shen TL, Lu JB, Zhang YL, et al., 2024. Waveform design of cognitive MIMO radar with multiple targets and multiple criterias. 6th Int Conf on Information Science, Electrical and Automation Engineering, 13275:1327510.

[17]Skolnik M, 2008. An Introduction and Overview of Radar. McGraw-Hill, New York, USA, p.1.

[18]Tang B, Naghsh MM, Tang J, 2015. Relative entropy-based waveform design for MIMO radar detection in the presence of clutter and interference. IEEE Trans Signal Process, 63(14):3783-3796.

[19]Tang B, Zhang Y, Tang J, 2018. An efficient minorization maximization approach for MIMO radar waveform optimization via relative entropy. IEEE Trans Signal Process, 66(2):400-411.

[20]Thornton CE, Kozy MA, Buehrer RM, et al., 2020. Deep reinforcement learning control for radar detection and tracking in congested spectral environments. IEEE Trans Cogn Commun Netw, 6(4):1335-1349.

[21]van der Werf I, Hendriks RC, Heusdens R, et al., 2023. Transmit waveform design based on the Cramér-Rao lower bound. Proc 9th IEEE Int Workshop on Computational Advances in Multi-Sensor Adaptive Processing, p.166-170.

[22]Xiao Y, Hu XX, 2022. Waveform design for multi-target detection based on two-stage information criterion. Entropy, 24(8):1075.

[23]Xu Z, Xie Z, Fan CY, et al., 2022. Probabilistically robust radar waveform design for extended target detection. IEEE Trans Signal Process, 70:4212-4224.

[24]Xu Z, Tang B, Ai WH, et al., 2025a. Radar transceiver design for extended targets based on optimal linear detector. IEEE Trans Aerosp Electron Syst, 61(3):6070-6082.

[25]Xu Z, Tang B, Ai WH, et al., 2025b. Relative entropy based jamming signal design against radar target detection. IEEE Trans Signal Process, 73:1200-1215.

[26]Yang C, Yang W, Qiu XF, et al., 2023. Cognitive radar waveform design method under the joint constraints of transmit energy and spectrum bandwidth. Remote Sens, 15(21):5187.

[27]Yu RF, Fu YW, Yang W, et al., 2024. Waveform design for target information maximization over a complex circle manifold. Remote Sens, 16(4):645.

[28]Zhu ZH, Kay S, Raghavan RS, 2017. Information-theoretic optimal radar waveform design. IEEE Signal Process Lett, 24(3):274-278.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE