CLC number: Q943.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 3
Clicked: 6043
JIANG Hua-wu, DIAN Wei-min, LIU Fei-yan, WU Ping. Cloning and characterization of a glucose 6-phosphate/phosphate translocator from Oryza sativa[J]. Journal of Zhejiang University Science A, 2003, 4(3): 331-335.
@article{title="Cloning and characterization of a glucose 6-phosphate/phosphate translocator from Oryza sativa",
author="JIANG Hua-wu, DIAN Wei-min, LIU Fei-yan, WU Ping",
journal="Journal of Zhejiang University Science A",
volume="4",
number="3",
pages="331-335",
year="2003",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2003.0331"
}
%0 Journal Article
%T Cloning and characterization of a glucose 6-phosphate/phosphate translocator from Oryza sativa
%A JIANG Hua-wu
%A DIAN Wei-min
%A LIU Fei-yan
%A WU Ping
%J Journal of Zhejiang University SCIENCE A
%V 4
%N 3
%P 331-335
%@ 1869-1951
%D 2003
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2003.0331
TY - JOUR
T1 - Cloning and characterization of a glucose 6-phosphate/phosphate translocator from Oryza sativa
A1 - JIANG Hua-wu
A1 - DIAN Wei-min
A1 - LIU Fei-yan
A1 - WU Ping
J0 - Journal of Zhejiang University Science A
VL - 4
IS - 3
SP - 331
EP - 335
%@ 1869-1951
Y1 - 2003
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2003.0331
Abstract: Plastids of nongreen tissues import carbon as a source of biosynthetic pathways and energy, and glucose 6-phosphate is the preferred hexose phosphate taken up by nongreen plastids. A cDNA clone encoding glucose 6-phosphate/phosphate translocator (GPT) was isolated from a cDNA library of immature seeds of rice and named as OsGPT. The cDNA has one uninterrupted open reading frame encoding a 42 kDa polypeptide possessing transit peptide consisting of 70 amino acid residues. The OsGPT gene maps on chromosome 8 of rice and is linked to the quantitative trait locus for 1000-grain weight. The expression of OsGPT is mainly restricted to heterotrophic tissues. These results suggest that glucose 6-phosphate imported via GPT can be used for starch biosynthesis in rice nongreen plastids.
[1]Borchert, S., Harborth, J., Schünemann, D., Hoferichter, P. and Heldt, H.W., 1993. Studies of the enzymatic capacities and trans-port properties of pea root plastids. Plant Physiol., 101: 303-312.
[2]Denyer, K., Dunlap, F., Thorbjornsen, T., Keeling, P. and Smith, A.M., 1996. The major form of ADP-glucose pyrophosphorylase in maize endosperm is extraplastidial. Plant Physiol., 112: 779-785.
[3]Harrison, C.J., Mould, R.M., Leech, M.J., Johnson, S.A., Turner, L., Schreck, S.L., Baird, K.M., Jack, P.L., Rawsthorne, S., Hedley, C.L. and Wang, T.L., 2000. The rug3 locus of pea encodes plastidial phosphoglucomutase. Plant Physiol., 122: 1187-1192.
[4]Hill,L.M. and Smith, A.M., 1991. Evidence that glucose 6-phosphate is imported as the substrate for starch biosynthesis by the plastids of developing pea embryos. Planta, 185: 91-96.
[5]Kammerer, B., Fischer, K., Hilpert, B., Schubert, S., Gutensohn, M., Weber, A. and Flugge, U.I.,1998. Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell, 10: 105-117.
[6]Kofler, H., Hausler, R.E., Schulz, B., Groner, F., Flugge, U.I. and Weber, A., 2000. Molecular characterisation of a new mutant allele of the plastid phosphoglucomutase in Arabidopsis, and complementation of the mutant with the wild-type cDNA. Mol. Gen. Genet., 263: 978-986.
[7]Lu, C., Shen, L., Tan, Z., Xu, Y., He, P., Chen, Y. and Zhu, L., 1996 Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor. Appl. Genet., 93: 1211-1217.
[8]Naeem, M., Tetlow, I.J. and Emes, M.J., 1997. Starch synthesis in amyloplasts purified from developing potato tubes. Plant J., 11: 1095-1103.
[9]Neuhaus, H.E., Thom, E., Batz, O. and Scheibe, R., 1993. Purification of highly intact plastids from various heterotrophic plant tissues. Analysis of enzyme equipment and precursor dependency for starch biosynthesis. Biochem. J., 296: 395-401.
[10]Neuhaus, H.E. and Maas, U., 1996. Unidirectional transport of orthophosphate across the envelope of isolated cauli-flower bud amyloplasts. Planta, 198: 542-548.
[11]Sikka, V. K., Choi, S.B., Kavakli, I. H., Sakulsingharoj, C., Gupta, S., Ito, H. and Okita, T.W., 2001. Subcellular compartmentation and allosteric regulation of the rice endosperm ADPglucose pyrophosphorylase. Plant Sci., 161: 461-468.
[12]Sullivan, T.D. and Kaneko, Y., 1995. The maize brittle1 gene encodes amyloplast membrane polypeptides. Planta, 196: 477-484.
[13]Tauberger, E., Fernie, A.R., Emmermann, M., Renz, A., Kossmann, J., Willmitzer, L. and Trethewey, R.N., 2000. Antisense inhibition of plastidial phosphoglucomutase provides compelling evidence that potato tuber amyloplasts import carbon from the cytosol in the form of glucose-6-phosphate. Plant J., 23: 43-53.
[14]Tetlow, J., Blisset, K.J. and Emes, M.J., 1994. Starch synthesis and carbohydrate oxidation in amyloplasts from developing wheat endosperm. Planta, 194: 454-460.
[15]Thorbjornsen, T., Villand, P., Denyer, K., Olsen, O.A. and Smith, A.M., 1996. Distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant J., 10: 243-250.
[16]Wu, J., Maehara, T., Shimokawa, T., Yamamoto, S., Harada, C., Takazaki, Y., Ono, N., Muka,I. Y., Koike, K., Yazaki, J., Fujii, F., Shomura, A., Ando, T., Kono, I., Waki, K., Yamamoto, K., Yano, M., Matsumoto, T. and Sasaki, T., 2002. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 14: 525-535.
[17]Xiao, J., Li, J., Yuan, J. and Tanksley, S.D., 1995. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 140: 745-754.
Open peer comments: Debate/Discuss/Question/Opinion
<1>