CLC number: TP13
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 1
Clicked: 6626
GUO Yun-fei, WEI Wei, XUE An-ke, MAO Dong-cai. A filter algorithm for multi-measurement nonlinear system with parameter perturbation[J]. Journal of Zhejiang University Science A, 2006, 7(10): 1717-1722.
@article{title="A filter algorithm for multi-measurement nonlinear system with parameter perturbation",
author="GUO Yun-fei, WEI Wei, XUE An-ke, MAO Dong-cai",
journal="Journal of Zhejiang University Science A",
volume="7",
number="10",
pages="1717-1722",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1717"
}
%0 Journal Article
%T A filter algorithm for multi-measurement nonlinear system with parameter perturbation
%A GUO Yun-fei
%A WEI Wei
%A XUE An-ke
%A MAO Dong-cai
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 10
%P 1717-1722
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1717
TY - JOUR
T1 - A filter algorithm for multi-measurement nonlinear system with parameter perturbation
A1 - GUO Yun-fei
A1 - WEI Wei
A1 - XUE An-ke
A1 - MAO Dong-cai
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 10
SP - 1717
EP - 1722
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1717
Abstract: An improved interacting multiple models particle filter (IMM-PF) algorithm is proposed for multi-measurement nonlinear system with parameter perturbation. It divides the perturbation region into sub-regions and assigns each of them a particle filter. Hence the perturbation problem is converted into a multi-model filters problem. It combines the multiple measurements into a fusion value according to their likelihood function. In the simulation study, we compared it with the IMM-KF and the H-infinite filter; the results testify to its advantage over the other two methods.
[1] Ababsa, F., Mallem, M., Roussel, D., 2004. Comparison between particle filter approach and Kalman filter-based technique for head tracking in augmented reality systems. IEEE ICRA, 1:1021-1026.
[2] Bar-Shalom, Y., Li, X.R., Kirubarajan, T., 2001. Estimation with Applications to Tracking and Navigation. John Wiley & Sons.
[3] Blom, H.A.P., Bloem, E.A., 2004. Particle filtering for stochastic hybrid systems. IEEE Conf. Decision and Control, 3:3221-3226.
[4] Boers, Y., Driessen, J.N., 2003. Interacting multiple model particle filter. IEEE Proc. RSN, 150(5):344-349.
[5] Fortmann, T., Bar-Shalom, Y., Scheffe, M., 1983. Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering, 8(3):173-184.
[6] Kotecha, J.H., Djuric, P.M., 2003. Gaussian sum particle filtering. IEEE Trans. SP, 51(10):2602-2612.
[7] McGinnity, S., Irwin, G.W., 2000. Multiple model bootstrap filter for maneuvering target tracking. IEEE Trans. AES, 36(3):1006-1012.
[8] Ristic, B., Arulampalam, S., Gordon, N., 2004. Beyond the Kalman Filter. Artech House.
[9] Tsaknakis, H., Athans, M., 1994. Tracking maneuvering targets using H∞ filters. ACC, 2:1796-1803.
[10] Zhou, H.R., Jing, Z.L., Wang, P.D., 1991. Tracking of Maneuvering Targets. National Defense Industry Press, Beijing (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>