Full Text:   <3572>

CLC number: O346.1; TB303

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 12

Clicked: 5755

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2007 Vol.8 No.2 P.228-236

http://doi.org/10.1631/jzus.2007.A0228


An adaptive finite element procedure for crack propagation analysis


Author(s):  ALSHOAIBI Abdulnaser M., HADI M.S.A., ARIFFIN A.K.

Affiliation(s):  Department of Mechanical & Materials Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

Corresponding email(s):   alshoaibi@gmail.com, alhager01@yahoo.com

Key Words:  Linear elastic fracture mechanics, Adaptive refinement, Stress intensity factors, Crack propagation


ALSHOAIBI Abdulnaser M., HADI M.S.A., ARIFFIN A.K.. An adaptive finite element procedure for crack propagation analysis[J]. Journal of Zhejiang University Science A, 2007, 8(2): 228-236.

@article{title="An adaptive finite element procedure for crack propagation analysis",
author="ALSHOAIBI Abdulnaser M., HADI M.S.A., ARIFFIN A.K.",
journal="Journal of Zhejiang University Science A",
volume="8",
number="2",
pages="228-236",
year="2007",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2007.A0228"
}

%0 Journal Article
%T An adaptive finite element procedure for crack propagation analysis
%A ALSHOAIBI Abdulnaser M.
%A HADI M.S.A.
%A ARIFFIN A.K.
%J Journal of Zhejiang University SCIENCE A
%V 8
%N 2
%P 228-236
%@ 1673-565X
%D 2007
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2007.A0228

TY - JOUR
T1 - An adaptive finite element procedure for crack propagation analysis
A1 - ALSHOAIBI Abdulnaser M.
A1 - HADI M.S.A.
A1 - ARIFFIN A.K.
J0 - Journal of Zhejiang University Science A
VL - 8
IS - 2
SP - 228
EP - 236
%@ 1673-565X
Y1 - 2007
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2007.A0228


Abstract: 
This paper presents the adaptive mesh finite element estimation method for analyzing 2D linear elastic fracture problems. The mesh is generated by the advancing front method and the norm stress error is taken as a posteriori error estimator for the h-type adaptive refinement. The stress intensity factors are estimated by a displacement extrapolation technique. The near crack tip displacements used are obtained from specific nodes of natural six-noded quarter-point elements which are generated around the crack tip defined by the user. The crack growth and its direction are determined by the calculated stress intensity factors. The maximum circumference theory is used for the latter. In evaluating the accuracy of the estimated stress intensity factors, four cases are tested consisting of compact tension specimen, three-point bending specimen, central cracked plate and double edge notched plate. These were carried out and compared to the results from other studies. The crack trajectories of these specimen tests are also illustrated.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Andersen, M.R., 1998. Fatigue Crack Initiation and Growth in Ship Structures. Ph.D Thesis, Technical University of Denmark.

[2] Anderson, T.L., 1994. Fracture Mechanics: Fundamental and Applications (2nd Ed.). CRC Press.

[3] Ariffin, A.K., 1995. Powder Compaction, Finite Element Modelling and Experimental Validation. Ph.D Thesis, University of Wales Swansea.

[4] Bittencourt, T.N., Wawrzynek, P.A., Ingraffea, A.R., Sousa, J.L., 1996. Quasi-automatic simulation of crack propagation for 2D LEFM problems. Engineering Fracture Mechanics, 55(2):321-334.

[5] Broek, D., 1986. Elementary Engineering Fracture Mechanics (4th Ed.). Martinus Nijhoff Publishers.

[6] de Matos, P.F.P., Moreira, P.M.G.P., Portela, A., de Castro, P.M.S.T., 2004. Dual boundary element analysis of cracked plates: post-processing implementation of the singularity subtraction technique. Computers and Structures, 82(17-19):1443-1449.

[7] El-Hamalawi, A., 2004. A 2D combined advancing front-delaunay mesh generation scheme. Finite Elements in Analysis and Design, 40(9-10):967-989.

[8] Fett, T., 1999. Stress intensity factors for edge-cracked plates under arbitrary loading. Fatigue & Fracture of Engineering Materials & Structures, 22(4):301-305.

[9] Freese, C.E., Baratta, F.I., 2006. Single edge-crack stress intensity factor solutions. Engineering Fracture Mechanics, 73(5):616-625.

[10] Guinea, G.V., Planan, J., Elices, M., 2000. KI evaluation by the displacement extrapolation technique. Engineering Fracture Mechanics, 66(3):243-255.

[11] Löhner, R., 1997. Automatic unstructured grid generators. Finite Elements in Analysis and Design, 25(1-2):111-134.

[12] Orange, T.W., 1988. Stress Intensity and Crack Displacement for Small Edge Cracks. NASA Technical Paper 2801.

[13] Parnas, L., Bilir, O.G., Tezcan, E., 1996. Strain gauge methods for measurement of opening mode stress intensity factor. Engineering Fracture Mechanics, 55(3):485-492.

[14] Phongthanapanich, S., Dechaumphai, P., 2004. Adaptive delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Element in Analysis and Design, 40(13-14):1753-1771.

[15] Portela, A., 1993. Dual Boundary Element Analysis of Crack Growth. Computational Mechanics Publications, Southampton, UK and Boston, USA.

[16] Sezer, L., Zeid, I., 1991.Automatic quadrilateral triangular free form mesh generation for planar region. International Journal for Numerical Methods in Engineering, 32(7):1441-1483.

[17] Simonsen, B.C., Tornqvist, R., 2004. Experimental and numerical modelling of ductile crack propagation in large-scale shell structures. Marine Structures, 17(1):1-27.

[18] Tada, H., Paris, P.C., Irwin, G.R., 2000. The Stress Analysis of Cracks Handbook. ASME Press, New York.

[19] Zhu, W.X., Smith, D.J., 1995. On the use of displacement extrapolation to obtain crack tip singular stresses and stress intensity factors. Engineering Fracture Mechanics, 51(3):391-400.

[20] Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z., 2005. The Finite Element Method: Its Basis and Fundamentals (6th Ed.). Elsevier Butterworth-Heinemann.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE