CLC number: TM92
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 7484
Zheng-shi WANG, Hui-ming CHEN. Zero-voltage switching converter absorbing parasitic parameters for super high frequency induction heating[J]. Journal of Zhejiang University Science A, 2008, 9(4): 564-571.
@article{title="Zero-voltage switching converter absorbing parasitic parameters for super high frequency induction heating",
author="Zheng-shi WANG, Hui-ming CHEN",
journal="Journal of Zhejiang University Science A",
volume="9",
number="4",
pages="564-571",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A071177"
}
%0 Journal Article
%T Zero-voltage switching converter absorbing parasitic parameters for super high frequency induction heating
%A Zheng-shi WANG
%A Hui-ming CHEN
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 4
%P 564-571
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A071177
TY - JOUR
T1 - Zero-voltage switching converter absorbing parasitic parameters for super high frequency induction heating
A1 - Zheng-shi WANG
A1 - Hui-ming CHEN
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 4
SP - 564
EP - 571
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A071177
Abstract: This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive and capacitive parasitic components in the converter. The switch devices operate in a zero-voltage soft-switching mode. Consequently, the high voltage and high current spikes caused by parasitic inductors or capacitors oscillation do not occur in this circuit, and the high power loss caused by high frequency switching can be greatly reduced. A large value inductor is adopted between the input capacitor and the switches, thus, this novel converter shares the benefits of both voltage-type and current-type circuits simultaneously, and there are no needs of dead time between two switches. The working principles in different modes are introduced. Results of simulation and experiments operated at around 1 MHz frequency verify the validity of parasitic components absorption and show that this converter is competent for super high frequency applications.
[1] Calleja, H., Ordonez, R., 1999. Improved Induction Heating with Power Factor Correction. Proc. IEEE Power Electronics Specialists Conf., p.1132-1137.
[2] Chang, J.S., Tan, M.T., Cheng, Z., Tong, Y.C., 2004. Analysis and design of power efficient class D amplifier output stages. IEEE Trans. on Circuits & Syst. I-Fundam. Theory & Appl., 47(6):897-902.
[3] Chen, M.P., Chen, J.K., Murata, K., Nakahara, M., Harada, K., 2001. Surge analysis of induction heating power supply with PLL. IEEE Trans. on Power Electr., 16(5):702-709.
[4] Czarkowski, D., Kazmierczuk, M.K., 1998. ZVS class D series resonant inverter-discrete-time state-space simulation and experimental results. IEEE Trans. on Circuits & Syst. I-Fundam. Theory & Appl., 45(11):1141-1147.
[5] Dede, E.J., Jordan, J., Esteve, V., Espi, J.M., Casans, S., 1999. Series and Parallel Resonant Inverters for Induction Heating Under Short-Circuit Conditions Considering Parasitic Components. Proc. Power Electronics and Device Systems, p.659-662.
[6] Espi, J.M., Navarro, A.E., Maicas, J., Ejea, J., Casans, S., 2000. Control Circuit Design of the L-LC Resonant Inverter for Induction Heating. Proc. IEEE Power Electronics Specialists Conf., p.1430-1435.
[7] Hinchliffe, S., Hobson, L., 1998. High power class-E amplifier for high-frequency induction heating applications. IEE Proc.-Electr. Power Appl., 24(14):886-888.
[8] Lee, D., Hyun, D., 2004. Hybrid control scheme of active-clamped class E inverter with induction heating power applications. IEE Proc.-Electr. Power Appl., 151(6):704-710.
[9] Moisseev, S., Muraoka, H., Nakamura, M., Okuno, A., Hiraki, E., Nakaoka, M., 2003. Zero voltage soft switching PWM high-frequency inverter using IGBTs for induction heated fixed roller. IEE Proc.-Electr. Power Appl., 150(2):237-244.
[10] Mollov, S.V., Theodoris, M., Forsyth, A.J., 2004. High frequency voltage-fed inverter with phase-shift control for induction heating. IEE Proc.-Electr. Power Appl., 151(1):12-18.
[11] Theodoridis, M.P., Mollo, S.V., 2004. Improved Gate Driver for a 13.56 MHz Resonant Inverter. Proc. 2nd IEE Int. Conf. on Power Electronics, Machines and Drives, 1:143-148.
[12] Wang, S., Izaki, K., Hirota, I., Yamashita, H., 1998. Induction-heating cooking appliance using new quasi-resonant ZVS-PWM inverter with power factor correction. IEEE Trans. on Ind. Appl., 34(4):705-712.
[13] Yoshida, D., Kifune, H., Hatanaka, Y., 2001. ZCS High Frequency Inverter for Induction Heating with Quasi-constant Frequency Power Control. Proc. 4th IEEE Int. Conf. on Power Electronics and Drive Systems, 2:755-759.
Open peer comments: Debate/Discuss/Question/Opinion
<1>