CLC number: X705
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-07-16
Cited: 16
Clicked: 7313
Chong Chen, Yu-qi Jin, Jian-hua Yan, Yong Chi. Simulation of municipal solid waste gasification for syngas production in fixed bed reactors[J]. Journal of Zhejiang University Science A, 2010, 11(8): 619-628.
@article{title="Simulation of municipal solid waste gasification for syngas production in fixed bed reactors",
author="Chong Chen, Yu-qi Jin, Jian-hua Yan, Yong Chi",
journal="Journal of Zhejiang University Science A",
volume="11",
number="8",
pages="619-628",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0900792"
}
%0 Journal Article
%T Simulation of municipal solid waste gasification for syngas production in fixed bed reactors
%A Chong Chen
%A Yu-qi Jin
%A Jian-hua Yan
%A Yong Chi
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 8
%P 619-628
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0900792
TY - JOUR
T1 - Simulation of municipal solid waste gasification for syngas production in fixed bed reactors
A1 - Chong Chen
A1 - Yu-qi Jin
A1 - Jian-hua Yan
A1 - Yong Chi
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 8
SP - 619
EP - 628
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0900792
Abstract: This study proposes a model of syngas production from municipal solid waste (MSW) gasification with air in fixed bed reactors. The model (using aspen plus simulator) is used to predict the results of MSW gasification and to provide some process fundamentals concerning syngas production from MSW gasification. The effects of gasification temperature, air equivalence ratio and moisture concentration on the composition of syngas, lower heating value (LHV) of syngas, heat conversion efficiency, and carbon conversion are discussed. The results indicate that higher temperature improves gasification, and higher air equivalence ratio increases the carbon conversion while decreasing syngas LHV. Heat conversion efficiency increases and reaches the maximum and then decreases with the increase of air equivalence ratio. Higher moisture concentration increases the carbon conversion and increases the heat conversion efficiency at lower ratios. Higher temperature and a lower equivalence ratio are favorable for obtaining a higher LHV of syngas at the same moisture concentration.
[1]Calaminus, B., Stahlberg, R., 1998. Continuous in-line gasification/vitrification process for thermal waste treatment: process technology and current status of projects. Waste Management, 18(6-8):547-556.
[2]Chen, H.P., Zhao, X.F., Mi, T., Dai, Z.H., 2007. Simulation of biomass gasification by ASPEN PLUS. Journal of Huazhong University of Science & Technology (Nature Science Edition), 35(9):49-52 (in Chinese).
[3]Cimini, S., Prisciandaro, M., Barba, D., 2005. Simulation of a waste incineration process with flue-gas cleaning and heat recovery sections using Aspen Plus. Waste Management, 25(2):171-175.
[4]de Jong, W., Unal, O., Andries, J., Hein, K.R.G., Spliethoff, H., 2003. Biomass and fossil fuel conversion by pressurised fluidised bed gasification using hot gas ceramic filters as gas cleaning. Biomass & Bioenergy, 25(1):59-83.
[5]Di Blasi, C.D., Branca, C., Sparano, S., Lamantia, B., 2003. Drying characteristics of wood cylinders for conditions pertinent to fixed-bed countercurrent gasification. Biomass & Bioenergy, 25(1):45-58.
[6]Dogru, M., Howarth, C.R., Akay, G., Keskinler, B., Malik, A.A., 2002. Gasification of hazelnut shells in a downdraft gasifier. Energy, 27(5):415-427.
[7]Friberg, R., Blasiak, W., 2002. Measurements of mass flux and stoichiometry of conversion gas from three different wood fuels as function of volume flux of primary air in packed-bed combustion. Biomass & Bioenergy, 23(3):189-208.
[8]Gerun, L., Paraschiv, M., Vijeu, R., Bellettre, J., Tazerout, M., Gobel, B., Henriksen, U., 2008. Numerical investigation of the partial oxidation in a two-stage downdraft gasifier. Fuel, 87(7):1383-1393.
[9]Gobel, B., Henriksen, U., Jensen, T.K., Qvale, B., Houbak, N., 2007. The development of a computer model for a fixed bed gasifier and its use for optimization and control. Bioresource Technology, 98(10):2043-2052.
[10]Jannelli, E., Minutillo, M., 2007. Simulation of the flue gas cleaning system of an RDF incineration power plant. Waste Management, 27(5):684-690.
[11]Jarungthammachote, S., Dutta, A., 2007. Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy, 32(9):1660-1669.
[12]Kayal, T.K., Chakravarty, M., Biswas, G.K., 1997. Mathematical modelling of steady state updraft gasification of jute stick particles of definite sizes packed randomly—An analytical approach. Bioresource Technology, 60(2):131-141.
[13]Khoshnoodi, M., Lim, Y.S., 1997. Simulation of partial oxidation of natural gas to synthesis gas using ASPEN PLUS. Fuel Processing Technology, 50(2-3):275-289.
[14]Lv, P., Yuan, Z.H., Ma, L.L., Wu, C.Z., Chen, Y., Zhu, J.X., 2007. Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renewable Energy, 32(13):2173-2185.
[15]Mathieu, P., Dubuisson, R., 2002. Performance analysis of a biomass gasifier. Energy Conversion and Management, 43(9-12):1291-1299.
[16]Nikoo, M.B., Mahinpey, N., 2008. Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass & Bioenergy, 32(12):1245-1254.
[17]Niu, J.X., Liu, Z.F., Zhang, W.J., Wu, Y.J., Li, Z.H., 2001. Research and exploitation of the up-suck straw gasification technology. Journal of the Hebei Academy of Sciences, 18(1):36-38 (in Chinese).
[18]Saravanakumar, A., Haridasan, T.M., Reed, T.B., Bai, R.K., 2007. Experimental investigations of long stick wood gasification in a bottom lit updraft fixed bed gasifier. Fuel Processing Technology, 88(6):617-622.
[19]Sharma, A.K., 2008. Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier. Energy Conversion and Management, 49(4):832-842.
[20]Shen, L., Gao, Y., Xiao, J., 2008. Simulation of hydrogen production from biomass gasification in interconnected fluidized beds. Biomass & Bioenergy, 32(2):120-127.
[21]Skoulou, V., Zabaniotou, A., Stavropoulos, G., Sakelaropoulos, G., 2008. Syngas production from olive tree cuttings and olive kernels in a downdraft fixed-bed gasifier. International Journal of Hydrogen Energy, 33(4):1185-1194.
[22]Slapak, M.J.P., van Kasteren, J.M.N., Drinkenburg, A.A.H., 2000. Design of a process for steam gasification of PVC waste. Resources Conservation and Recycling, 30(2):81-93.
[23]Sotudeh-Gharebaagh, R., Legros, R., Chaouki, J., Paris, J., 1998. Simulation of circulating fluidized bed reactors using ASPEN PLUS. Fuel, 77(4):327-337.
[24]Thamavithya, M., Dutta, A., 2008. An investigation of MSW gasification in a spout-fluid bed reactor. Fuel Processing Technology, 89(10):949-957.
[25]Warnecke, R., 2000. Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass & Bioenergy, 18(6):489-497.
[26]Yang, H.P., Yan, R., Chen, H.P., Lee, D.H., Liang, D.T., Zheng, C.G., 2006. Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel Processing Technology, 87(10):935-942.
[27]Zhao, Y.H., Hao, W., Xu, Z.H., 2006. Conceptual design and simulation study of a co-gasification technology. Energy Conversion and Management, 47(11-12):1416-1428.
[28]Zheng, L.G., Furimsky, E., 2003. ASPEN simulation of cogeneration plants. Energy Conversion and Management, 44(11):1845-1851.
[29]Zheng, L.G., Furimsky, E., 2005. Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulations. Energy Conversion and Management, 46(11-12):1767-1779.
Open peer comments: Debate/Discuss/Question/Opinion
<1>