CLC number: TG146.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-08-17
Cited: 1
Clicked: 5919
Jing-mei Ma, Feng Ye, Yan-ge Cao, Chun-feng Liu, Hai-jiao Zhang. Microstructure and mechanical properties of liquid phase sintered silicon carbide composites[J]. Journal of Zhejiang University Science A, 2010, 11(10): 766-770.
@article{title="Microstructure and mechanical properties of liquid phase sintered silicon carbide composites",
author="Jing-mei Ma, Feng Ye, Yan-ge Cao, Chun-feng Liu, Hai-jiao Zhang",
journal="Journal of Zhejiang University Science A",
volume="11",
number="10",
pages="766-770",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1000162"
}
%0 Journal Article
%T Microstructure and mechanical properties of liquid phase sintered silicon carbide composites
%A Jing-mei Ma
%A Feng Ye
%A Yan-ge Cao
%A Chun-feng Liu
%A Hai-jiao Zhang
%J Journal of Zhejiang University SCIENCE A
%V 11
%N 10
%P 766-770
%@ 1673-565X
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1000162
TY - JOUR
T1 - Microstructure and mechanical properties of liquid phase sintered silicon carbide composites
A1 - Jing-mei Ma
A1 - Feng Ye
A1 - Yan-ge Cao
A1 - Chun-feng Liu
A1 - Hai-jiao Zhang
J0 - Journal of Zhejiang University Science A
VL - 11
IS - 10
SP - 766
EP - 770
%@ 1673-565X
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1000162
Abstract: silicon carbide (SiC) composites were prepared by hot-press sintering from α-SiC starting powders with baAl2Si2O8 (BAS). The effects of additives on densification, microstructure, flexural strength, and fracture behavior of the liquid phase sintered (LPS) SiC composites were investigated. The results show that the served BAS effectively promotes the densification of SiC composites. The flexural strength and fracture toughness of the SiC composites can reach a maximum value of 454 MPa and 5.1 MPa·m1/2, respectively, for 40% (w/w) BAS/SiC composites. SiC grain pullout, crack deflection, and crack bridging were main toughening mechanisms for the sintered composites.
[1]Bansal, N.P., 2003. Celsian formation in fiber-reinforced barium aluminosilicate glass-ceramic matrix composites. Materials Science and Engineering: A, 342(1-2):23-27.
[2]Bansal, N.P., Hyatt, M.J., 1989. Crystallization behavior and properties of BaO·Al2O3·2SiO2. Journal of Materials Research, 4(5):1257-1265.
[3]Baud, S., Thévenot, F., Chatillon, C., 2003a. High temperature sintering of SiC with oxide additives: IV. Powder beds and the influence of vaporization on the behaviour of SiC compacts. Journal of the European Ceramic Society, 23(1):29-36.
[4]Baud, S., Thévenot, F., Pisch, A., Chatillon, C., 2003b. High temperature sintering of SiC with oxide additives: I. Analysis in the SiC-Al2O3 and SiC-Al2O3-Y2O3 systems. Journal of the European Ceramic Society, 23(1):1-8.
[5]Chen, S., Ye, F., Zhou, Y., 2002. Low temperature hot-pressing BAS matrix composites reinforced with in situ grown Si3N4 whiskers. Ceramics International, 28(1):51-58.
[6]Choi, H.J., Lee, J.G., Kim, Y.M., 2002. Oxidation behavior of liquid-phase sintered silicon carbide with aluminum nitride and rare-earth oxides (Re2O3, where Re=Y, Er, Yb). Journal of the American Ceramic Society, 85(9):2281-2286.
[7]Hotta, M., Hojo, J., 2009. Effect of AlN additive on densification, microstructure and strength of liquid-phase sintered SiC ceramics by spark plasma sintering. Journal of the Ceramic Society of Japan, 117(1369):1009-1012.
[8]Ihle, J., Herrmann, M., Adler, J., 2005a. Phase formation in porous liquid phase sintered silicon carbide: Part I: Interaction between Al2O3 and SiC. Journal of the European Ceramic Society, 25(7):987-995.
[9]Ihle, J., Herrmann, M., Adler, J., 2005b. Phase formation in porous liquid phase sintered silicon carbide: Part II: Interaction between Y2O3 and SiC. Journal of the European Ceramic Society, 25(7):997-1003.
[10]Ihle, J., Herrmann, M., Adler, J., 2005c. Phase formation in porous liquid phase sintered silicon carbide: Part III: Interaction between Al2O3-Y2O3 and SiC. Journal of the European Ceramic Society, 25(7):1005-1013.
[11]Kim, Y.W., Mitomo, I., Nishimura, T., 2002. High temperature strength of liquid phase sintered SiC with AlN and Re2O3 (RE=Y, Yb). Journal of the American Ceramic Society, 85(4):1007-1009.
[12]Lee, K.T, Aswath, P.B., 2000. Synthsis of hexacelsian barium aluminosilicate by a solid-state process. Journal of the American Ceramic Society, 83(12):2907-2912.
[13]Lee, K.T, Aswath, P.B., 2001. Enhanced production of celsian barium aluminosilicates by a three-step firing technique. Materials Chemistry and Physics, 71(1):47-52.
[14]Lee, S.H., Lee, Y.I., Kim, Y.W., Xie, R.J., Mitomo, M., Zhan, G.D., 2005. Mechanical properties of hot-forged silicon carbide ceramics. Scripta Materialia, 52(2):153-156.
[15]Liu, L.M., Ye, F., Zhang, H.J., Yu, J., Zhang, Z.G., 2009. Celsian formation in Si3N4-Ba0.75Sr0.25Si2Al2O8 composites. Scripta Materialia, 60(6):463-466.
[16]Liu, L.M., Zhou, Y., Zhang, Z.G., 2010. Microstructure compatibility and its effect on the mechanical properties of the α-SiC/β-Si3N4 co-reinforced barium aluminosilicate glass ceramic matrix composites. Scripta Materialia, 63(2):166-169.
[17]Magnani, G., Brillante, A., Bilotti, I., Beaulardi, L., Trentini, E., 2008. Effects of oxidation on surface stresses and mechanical properties of liquid pressureless-sintered SiC-AlN-Y2O3 ceramics. Materials Science and Engineering: A, 486(1-2):381-388.
[18]Ortiz, A.L., Cumbrera, F.L., Sánchez-Bajo, F., Guiberteau, F., Xu, H.W., Padture, N.P., 2000. Quantitative phase-composition analysis of liquid-phase-sintered silicon carbide using the rietveld method. Journal of the American Ceramic Society, 83(9):2282-2286.
[19]Rixecker, G., Wiedmann, I., Rosinus, A., Aldinger, F., 2001. Journal of the European Ceramic Society, 21(8):1013-1019.
[20]Schwetz, K.A., 2000. Silicon Carbide Based Hard Materials. In: Riedel, R. (Ed.), Handbook of Ceramic Hard Materials, Wiley-VCH, Weinheim, p.683-748.
[21]Suzuki, K., Sasaki, M., 2005. Microstructure and mechanical properties of liquid-phase-sintered SiC with AlN and Y2O3 additions. Ceramics International, 31(5):749-755.
[22]Ye, F., Zhou, Y., Lei, T.C., Yang, J.M., Zhang, L.T., 2001. Microstructure and mechanical properties of barium aluminosilicate glass-ceramic matrix composites rein-forced with SiC whiskers. Journal of Materials Science, 36(10):2575-2580.
[23]Ye, F., Gu, J.C., Zhou, Y., Iwasa, M., 2003. Synthesis of BaAl2Si2O8 glass by a sol-gel method and the fabrication of SiCpl/BaAl2Si2O8 composites. Journal of the European Ceramic Society, 23(13):2203-2209.
[24]Ye, F., Liu, L.M., Zhang, J.X., Meng, Q.C., 2008. Synthesis of 30wt%BAS/Si3N4 composite by spark plasma sintering. Composites Science and Technology, 68(3-4):1073-1079.
[25]Ye, F., Liu, L.M., Zhang, H.J., Wen, B.S., 2010. Thermal shock behavior of 30wt% BAS/Si3N4 self-reinforced composite. Journal of Alloys and Compounds, 493(1-2):272-275.
[26]Yu, F., White, K.W., 2001. Relationship between microstructure and mechanical performance of a 70% silicon nitride-30% barium aluminum silicate self-reinforced ceramic composite. Journal of the American Ceramic Society, 84(1):5-12.
[27]Yu, F., Nagarajan, N., Fang, Y., White, K.W., 2001. Microstructural control of a 70% silicon nitride-30% barium aluminum silicate self-reinforced composite. Journal of the American Ceramic Society, 84(1):13-22.
[28]Zhang, J.S., Zhang, Y.Y., Wang, M.T., Xu, F.X., 2007. Microstructure and Properties of Ceramics. Chemical Industry Publishing House, Beijing, China, p.213.
[29]Zhou, Y., Hirao, K., Toriyama, M., Yamauchi, Y., Kanzaki, S., 2001. Effects of intergranular phase chemistry on the microstructure and mechanical properties of silicon carbide ceramics densified with rare-earth oxide and alumina additions. Journal of the American Ceramic Society, 84(7):1642-1644.
Open peer comments: Debate/Discuss/Question/Opinion
<1>