Full Text:   <3247>

Summary:  <2146>

CLC number: TV512

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-01-05

Cited: 0

Clicked: 5868

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Long Yan

http://orcid.org/0000-0001-6099-5925

Qing-xiang Meng

http://orcid.org/0000-0002-8771-5177

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2017 Vol.18 No.2 P.124-137

http://doi.org/10.1631/jzus.A1500335


A numerical method for analyzing the permeability of heterogeneous geomaterials based on digital image processing


Author(s):  Long Yan, Qing-xiang Meng, Wei-ya Xu, Huan-ling Wang, Qiang Zhang, Jiu-chang Zhang, Ru-bin Wang

Affiliation(s):  Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; more

Corresponding email(s):   tianyameng@hhu.edu.cn

Key Words:  Heterogeneous geomaterials, Digital image processing (DIP), Macro permeability coefficient, Scale dependency


Long Yan, Qing-xiang Meng, Wei-ya Xu, Huan-ling Wang, Qiang Zhang, Jiu-chang Zhang, Ru-bin Wang. A numerical method for analyzing the permeability of heterogeneous geomaterials based on digital image processing[J]. Journal of Zhejiang University Science A, 2017, 18(2): 124-137.

@article{title="A numerical method for analyzing the permeability of heterogeneous geomaterials based on digital image processing",
author="Long Yan, Qing-xiang Meng, Wei-ya Xu, Huan-ling Wang, Qiang Zhang, Jiu-chang Zhang, Ru-bin Wang",
journal="Journal of Zhejiang University Science A",
volume="18",
number="2",
pages="124-137",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500335"
}

%0 Journal Article
%T A numerical method for analyzing the permeability of heterogeneous geomaterials based on digital image processing
%A Long Yan
%A Qing-xiang Meng
%A Wei-ya Xu
%A Huan-ling Wang
%A Qiang Zhang
%A Jiu-chang Zhang
%A Ru-bin Wang
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 2
%P 124-137
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500335

TY - JOUR
T1 - A numerical method for analyzing the permeability of heterogeneous geomaterials based on digital image processing
A1 - Long Yan
A1 - Qing-xiang Meng
A1 - Wei-ya Xu
A1 - Huan-ling Wang
A1 - Qiang Zhang
A1 - Jiu-chang Zhang
A1 - Ru-bin Wang
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 2
SP - 124
EP - 137
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500335


Abstract: 
In this study, we propose a digital image processing technology for estimating the macro permeability property of heterogeneous geomaterials. The technology is based on a connected-component labeling algorithm and provides a novel and effective method for geometry vectorization and microstructure identification. A color photo of a soil and rock mixture (SRM) is taken as an example. Information about the distribution of aggregate and a vectorgraph, which can be used in numerical analysis, are obtained automatically. A numerical permeability test is carried out to estimate the macro permeability coefficient of the heterogeneous medium. The effects on macro permeability of three parameters, scale dependency, material heterogeneity and the rock fraction, are discussed. The results indicate that the SRM has a scale dependent property and the representative element volume (REV) length is about six times the maximum major axis of the aggregate. The heterogeneity parameter has a major effect on macro permeability characteristics within a certain range. There is a weak tendency for the macro permeability to decrease as the rock fraction increases. Although the rock fraction is not the only factor, it does have an influence on the macro permeability. We conclude that the novel method developed in this study has good prospects for widespread application in macro parameter estimation and related research fields.

The authors establishes a digital image processing together with FEM numerical method for permeability analysis of geomaterials considering the material heterogeneity. The manuscript is well organized and easy to follow.

基于数字图像的非均匀岩土材料渗透系数研究

目的:建立一种较为快速和快速确定非均匀岩土材料渗透系数的方法。
创新点:建立了一种可以从图像到数值模型的数字图像方法:通过拍照、CT等手段获取岩土材料的图像,进而通过数值分析确定等效参数。
方法:1. 将采集到彩色图像从RGB空间转化到HSI空间,选取识别度较高的空间进行二值化处理;2. 获取二值化图像后采用邻域标记算法标记,结合本文提出的算法提取边界(图9和10);3. 结合边界修正算法对锯齿状边界进行修正(图11);4. 确定表征细观几何模型(图12和表1);5. 绘制网格开展数值分析,确定宏观参数。
结论:1. 基于数值图像的非均匀岩土材料渗透系数确定方法可以较为准确地估算渗透系数,可以为工程设计提供初步依据。2. 非均匀岩土材料具有明显的尺寸效应,随着尺寸增加,渗透率的变化逐渐趋于稳定;当材料视为岩石和土体的二元介质时,两种性质差异在10倍以内对宏观特性的影响较大,大于10倍之后影响减弱。3. 岩土材料渗透率随着内部块石含量的增加而减小,但是内部块石的形态对渗透率也有一定的影响。

关键词:非均质岩土材料;数字图像;宏观渗透系数;尺寸效应

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ammouche, A., Breysse, D., Hornain, H., et al., 2000. A new image analysis technique for the quantitative assessment of microcracks in cement-based materials. Cement and Concrete Research, 30(1):25-35.

[2]Armesto, J., Lubowiecka, I., Ordóñez, C., et al., 2009. FEM modeling of structures based on close range digital photogrammetry. Automation in Construction, 18(5):559-569.

[3]Bažant, Z.P., Tabbara, M.R., Kazemi, M.T., et al., 1990. Random particle model for fracture of aggregate or fiber composites. Journal of Engineering Mechanics, 116(8):1686-1705.

[4]Bessa, I.S., Branco, V.T.C., Soares, J.B., 2012. Evaluation of different digital image processing software for aggregates and hot mix asphalt characterizations. Construction and Building Materials, 37:370-378.

[5]Carroll, J.D., Abuzaid, W., Lambros, J., et al., 2013. High resolution digital image correlation measurements of strain accumulation in fatigue crack growth. International Journal of Fatigue, 57(12):140-150.

[6]Chang, S., Zhang, S., 2007. Engineering Geology Handbook. China Architecture & Building Press, Beijing, China (in Chinese).

[7]Chaves, A., La Scalea, R., Colturato, A., et al., 2015. Using UAVs and digital image processing to quantify areas of soil and vegetation. Journal of Physics: Conference Series, 633(1):012112.

[8]Chen, S., Yue, Z., Tham, L., 2004. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. International Journal of Rock Mechanics and Mining Sciences, 41(6):939-957.

[9]Chen, S., Yue, Z.Q., Tham, L.G., 2005. Digital image based numerical modeling method for heterogeneous geomaterials. Chinese Journal of Geotechnical Engineering, 27(8):956-964.

[10]Chen, S., Yue, Z.Q., Tham, L.G., 2007. Digital image based approach for three-dimensional mechanical analysis of heterogeneous rocks. Rock Mechanics and Rock Engineering, 40(2):145-168.

[11]Chena, S., Yueb, Z.Q., Kwan, A., 2013. Actual microstructure-based numerical method for mesomechanics of concrete. Computers and Concrete, 12(1):1-18.

[12]Frey, P.J., George, P.L., 2010. Mesh Generation. John Wiley & Sons, New York, USA.

[13]Gonzalez, R.C., Woods, R.E., Eddins, S.L., 2009. Digital Image Processing Using MATLAB, 2nd Edition. Publishing House of Electronics Industry, Beijing, China.

[14]Haralick, R.M., Shapiro, L.G., 1991. Glossary of computer vision terms. Pattern Recognition, 24(1):69-93.

[15]Johnson, N.L., Kotz, S., Balakrishnan, N., 2002. Continuous Multivariate Distributions: Volume 1, Models and Applications. John Wiley & Sons, New York, USA.

[16]Kameda, A., 2004. Permeability Evolution in Sandstone: Digital Rock Approach. PhD Thesis, Stanford University, CA, USA.

[17]Kemeny, J., Mofya, E., Kaunda, R., et al., 2010. Improvements in blast fragmentation models using digital image processing. Fragblast, 6(3):311-320.

[18]Khan, M.B., Xue, Y.L., Nisar, H., et al., 2015. Digital image processing and analysis for activated sludge wastewater treatment. Advances in Experimental Medicine & Biology, 823:227-248.

[19]Kwan, A.K.H., Wang, Z.M., Chan, H.C., 1999a. Mesoscopic study of concrete II: nonlinear finite element analysis. Computers & Structures, 70(5):545-556.

[20]Kwan, A.K.H., Mora, C.F., Chan, H.C., 1999b. Particle shape analysis of coarse aggregate using digital image processing. Cement and Concrete Research, 29(9):1403-1410.

[21]Li, A., Shao, G.J., Yu, T.T., et al., 2014. Mesoscopic numerical simulation of stratified rock failure using digital image processing. Advances in Mechanical Engineering, 2014(12):1-12.

[22]Mariño, A., Luthin, J.N., 1982. Seepage and Groundwater. Elsevier Science, the Netherlands.

[23]Michailidis, N., Stergioudi, F., Omar, H., et al., 2010. An image-based reconstruction of the 3D geometry of an Al open-cell foam and FEM modeling of the material response. Mechanics of Materials, 42(2):142-147.

[24]Pitas, I., 2000. Digital Image Processing Algorithms and Applications. John Wiley & Sons, New York, USA.

[25]Rushton, K.R., 2004. Groundwater Hydrology: Conceptual and Computational Models. John Wiley & Sons, New York, USA.

[26]Sezgin, M., Sankur, B., 2004. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1):146-168.

[27]Sharma, G., Bala, R., 2002. Digital Color Imaging Handbook. Taylor & Francis, UK.

[28]Skoczylas, F., Henry, J.P., 1995. A study of the intrinsic permeability of granite to gas. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(2):171-179.

[29]Smith, I.M., Griffiths, D.V., Margetts, L., 2013. Programming the Finite Element Method. John Wiley & Sons, New York, USA.

[30]Steinberg, E., Prilutsky, Y., Corcoran, P., et al., 2010. Digital Image Processing Using Face Detection Information. US Patent 7574016.

[31]Venkatramaiah, C., 2006. Geotechnical Engineering. New Age International (P) Limited, New Delhi, India.

[32]Wang, X.F., Yang, Z.J., Yates, J., et al., 2015. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores. Construction and Building Materials, 75:35-45.

[33]Wang, Z.M., Kwan, A., Chan, H.C., 1999. Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh. Computers & Structures, 70(5):533-544.

[34]Wilson, J.N., Ritter, G.X., 2000. Handbook of Computer Vision Algorithms in Image Algebra. Taylor & Francis, UK.

[35]Xu, J.M., Zhao, X.B., Liu, B., 2007. Digital image analysis of fluid inclusions. International Journal of Rock Mechanics and Mining Sciences, 44(6):942-947.

[36]Xu, W.J., Hu, R.L., Wang, Y.P., 2007. PFC2D model for mesostructure of inhomogeneous geomaterial based on digital image processing. Journal of China Coal Society, 32(4):358-362 (in Chinese).

[37]Xu, W.J., Hu, R.L., Yue, Z.Q., 2008a. Meso-structure character of soil-rock mixtures based on digital image. Journal of Liaoning Technical University (Natural Science), 27(1):51-53 (in Chinese).

[38]Xu, W.J., Yue, Z.Q., Hu, R.L., 2008b. Study on the mesostructure and mesomechanical characteristics of the soil–rock mixture using digital image processing based finite element method. International Journal of Rock Mechanics and Mining Sciences, 45(5):749-762.

[39]Xu, Y., Gao, Q., Li, X., et al., 2009. In-situ experimental study of permeability of rock and soil aggregates. Rock and Soil Mechanics, 30(3):855-858 (in Chinese).

[40]Yu, Q.L., Tang, C.A., Zhu, W.C., et al., 2006. Digital image processing based modeling of rock failure in meso-scale. Mechanics in Engineering, 28(4):60-64.

[41]Yu, Q.L., Tang, C.A., Tang, S.B., 2007. Digital image based characterization method of rock’s heterogeneity and its primary application. Chinese Journal of Rock Mechanics & Engineering, 26(3):551-559 (in Chinese).

[42]Yu, Q.L., Zheng, C., Yang, T.H., et al., 2012. Meso-structure characterization based on coupled thermal-mechanical model for rock failure process and applications. Chinese Journal of Rock Mechanics & Engineering, 31(1):42-51 (in Chinese).

[43]Yue, Z.Q., Bekking, W., Morin, I., 1995. Application of digital image processing to quantitative study of asphalt concrete microstructure. Transportation Research Record, 1492: 53-60.

[44]Yue, Z.Q., Chen, S., Tham, L., 2003. Finite element modeling of geomaterials using digital image processing. Computers and Geotechnics, 30(5):375-397.

[45]Yue, Z.Q., Chen, S., Zheng, H., et al., 2004. Digital image proceeding based on finite element method for geomaterials. Chinese Journal of Rock Mechanics and Engineering, 23(6):889-897 (in Chinese).

[46]Zeng, Q.L., Wang, J.G., Wang, L., et al., 2013. The research of coal mine conveyor belt tearing based on digital image processing. Proceedings of the 2012 International Conference on Communication, Electronics and Automation Engineering, p.187-191.

[47]Zhou, Z., Fu, H.L., Liu, B.C., et al., 2006. Experimental study of the permeability of soil-rock-mixture. Journal of Hunan University (Natural Sciences), 33(6):25-28 (in Chinese).

[48]Zhu, W.C., Kang, Y.M., Yang, T.H., et al., 2006. Application of digital image-based heterogeneity characterization in coupled hydromechanics of rock. Chinese Journal of Geotechnical Engineering, 28(12):2087-2091 (in Chinese).

[49]Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z., 2013. The Finite Element Method: Its Basis and Fundamentals. Elsevier Science, the Netherlands.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE