Full Text:   <1070>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2023-02-01

Cited: 0

Clicked: 1349

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Farid LAOUAFA

https://orcid.org/0000-0003-1082-9130

Jianwei GUO

https://orcid.org/0000-0002-0648-630X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.1 P.20-36

http://doi.org/10.1631/jzus.A2200169


Modelling and applications of dissolution of rocks in geoengineering


Author(s):  Farid LAOUAFA, Jianwei GUO, Michel QUINTARD

Affiliation(s):  National Institute for Industrial Environment and Risks (INERIS), Verneuil en Halatte, 60550, France; more

Corresponding email(s):   farid.laouafa@ineris.fr, jianweiguo@swjtu.edu.cn

Key Words:  Dissolution, Modelling, Scaling, Evaporite, Deformation, Plasticity


Farid LAOUAFA, Jianwei GUO, Michel QUINTARD. Modelling and applications of dissolution of rocks in geoengineering[J]. Journal of Zhejiang University Science A, 2023, 24(1): 20-36.

@article{title="Modelling and applications of dissolution of rocks in geoengineering",
author="Farid LAOUAFA, Jianwei GUO, Michel QUINTARD",
journal="Journal of Zhejiang University Science A",
volume="24",
number="1",
pages="20-36",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200169"
}

%0 Journal Article
%T Modelling and applications of dissolution of rocks in geoengineering
%A Farid LAOUAFA
%A Jianwei GUO
%A Michel QUINTARD
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 1
%P 20-36
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200169

TY - JOUR
T1 - Modelling and applications of dissolution of rocks in geoengineering
A1 - Farid LAOUAFA
A1 - Jianwei GUO
A1 - Michel QUINTARD
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 1
SP - 20
EP - 36
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200169


Abstract: 
The subsoil contains many evaporites such as limestone, gypsum, and salt. Such rocks are very sensitive to water. The deposit of evaporites raises questions because of their dissolution with time and the mechanical-geotechnical impact on the neighboring zone. Depending on the configuration of the site and the location of the rocks, the dissolution can lead to surface subsidence and, for instance, the formation of sinkholes and landslides. In this study, we present an approach that describes the dissolution process and its coupling with geotechnical engineering. In the first part we set the physico-mathematical framework, the hypothesis, and the limitations in which the dissolution process is stated. The physical interface between the fluid and the rock (porous) is represented by a diffuse interface of finite thickness. We briefly describe, in the framework of porous media, the steps needed to upscale the microscopic-scale (pore-scale) model to the macroscopic scale (Darcy scale). Although the constructed method has a large range of application, we will restrict it to saline and gypsum rocks. The second part is mainly devoted to the geotechnical consequences of the dissolution of gypsum material. We then analyze the effect of dissolution in the vicinity of a soil dam or slope and the partial dissolution of a gypsum pillar by a thin layer of water. These theoretical examples show the relevance and the potential of the approach in the general framework of geoengineering problems.

岩石溶解的建模与应用

作者:Farid LAOUAFA1,郭建威2,Michel QUINTARD3,4
机构:1国家工业环境与风险研究所(INERIS),法国韦尔讷伊昂阿拉特,60550;2西南交通大学,力学与航空航天学院,中国成都,610031;3图卢兹大学,INPT,UPS,IMFT(图卢兹流体研究所),卡米尔苏拉,法国图卢兹,F-31400;4法国国家科学研究中心,图卢兹流体研究所,法国图卢兹,F-31400
目的:展示一种用于描述溶解过程及其与岩土工程的耦合的方法,预测地下洞穴的发育过程,为天坑等地质灾害的防治提供依据。
创新点:用达西尺度模型的扩散界面代替孔隙尺度模型的锐利界面来描述溶解过程,提升研究对象的尺度和计算效率。
方法:利用体积平均法将孔隙尺度模型上推到达西尺度。
结论:达西尺度模型描述溶解过程与孔隙尺度模型的结果吻合良好,可广泛应用于岩土工程中的各类溶解问题。

关键词:溶解;建模;尺度;蒸发岩;变形;塑性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AndersonDM, McFaddenGB, 1998. Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics, 30:139-165.

[2]BachmatY, BearJ, 1987. On the concept and size of a representative elementary volume (Rev). In: Bear J, Corapcioglu MY (Eds.), Advances in Transport Phenomena in Porous Media. Springer, Dordrecht, the Netherlands, p.3-20.

[3]BellFG, StaceyTR, GenskeDD, 2000. Mining subsidence and its effect on the environment: some differing examples. Environmental Geology, 40(1-2):135-152.

[4]BrinkmanHC, 1949. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbulence and Combustion, 1(1):27-34.

[5]CastellanzaR, GerolymatouE, NovaR, 2008. An attempt to predict the failure time of abandoned mine pillars. Rock Mechanics and Rock Engineering, 41(3):377-401.

[6]CharmoilleA, DaupleyX, 2012. Analyse et Modélisation de L’évolution Spatio-Temporelle des Cavités de Dissolution. Report DRS-12-127199-10107A, INERIS, France (in French).

[7]CollinsJB, LevineH, 1985. Diffuse interface model of diffusion-limited crystal growth. Physical Review B, 31(9):6119-6122.

[8]CooperAH, 1988. Subsidence resulting from the dissolution of Permian gypsum in the Ripon area; its relevance to mining and water abstraction. Geological Society, London, Engineering Geology Special Publications, 5:387-390.

[9]DoneaJ, GiulianiS, HalleuxJP, 1982. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Computer Methods in Applied Mechanics and Engineering, 33(1-3):689-723.

[10]FengJ, HuHH, JosephDD, 1994. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. Journal of Fluid Mechanics, 277:271-301.

[11]FreezeRA, CherryJA, 1979. Groundwater. Prentice Hall, Englewood Cliffs, USA, p.604.

[12]GerolymatouE, NovaR, 2008. An analysis of chamber filling effects on the remediation of flooded gypsum and anhydrite mines. Rock Mechanics and Rock Engineering, 41(3):403-419.

[13]GombertP, OrsatJ, MathonD, et al., 2015. Rôle des effondrements karstiques sur les désordres survenus sur les digues de Loire dans le Val D’Orleans (France). Bulletin of Engineering Geology and the Environment, 74(1):‍125-140 (in French).

[14]GuoJW, QuintardM, LaouafaF, 2015. Dispersion in porous media with heterogeneous nonlinear reactions. Transport in Porous Media, 109(3):541-570.

[15]GuoJW, LaouafaF, QuintardM, 2016. A theoretical and numerical framework for modeling gypsum cavity dissolution. International Journal for Numerical and Analytical Methods in Geomechanics, 40(12):1662-1689.

[16]GyselM, 2002. Anhydrite dissolution phenomena: three case histories of anhydrite karst caused by water tunnel operation. Rock Mechanics and Rock Engineering, 35(1):1-21.

[17]HillR, 1958. A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 6(3):236-249.

[18]JamesAN, LuptonARR, 1978. Gypsum and anhydrite in foundations of hydraulic structures. Géotechnique, 28(3):249-272.

[19]JeschkeAA, DreybrodtW, 2002. Dissolution rates of minerals and their relation to surface morphology. Geochimica et Cosmochimica Acta, 66(17):3055-3062.

[20]JeschkeAA, VosbeckK, DreybrodtW, 2001. Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochimica et Cosmochimica Acta, 65(1):27-34.

[21]LaddAJC, SzymczakP, 2021. Reactive flows in porous media: challenges in theoretical and numerical methods. Annual Review of Chemical and Biomolecular Engineering, 12:543-571.

[22]LaddAJC, YuL, SzymczakP, 2020. Dissolution of a cylindrical disk in Hele-Shaw flow: a conformal-mapping approach. Journal of Fluid Mechanics, 903:A46.

[23]LaouafaF, PrunierF, DaouadjiA, et al., 2011. Stability in geomechanics, experimental and numerical analyses. International Journal for Numerical and Analytical Methods in Geomechanics, 35(2):112-139.

[24]LaouafaF, GuoJW, QuintardM, 2021. Underground rock dissolution and geomechanical issues. Rock Mechanics and Rock Engineering, 54(7):3423-3445.

[25]LuoH, LaouafaF, GuoJ, et al., 2014. Numerical modeling of three-phase dissolution of underground cavities using a diffuse interface model. International Journal for Numerical and Analytical Methods in Geomechanics, 38(15):1600-1616.

[26]LuoHS, QuintardM, DebenestG, et al., 2012. Properties of a diffuse interface model based on a porous medium theory for solid-liquid dissolution problems. Computational Geosciences, 16(4):913-932.

[27]LuoHS, LaouafaF, DebenestG, et al., 2015. Large scale cavity dissolution: from the physical problem to its numerical solution. European Journal of Mechanics-B/Fluids, 52:131-146.

[28]MolinsS, SoulaineC, PrasianakisNI, et al., 2021. Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: review of approaches and benchmark problem set. Computational Geosciences, 25(4):1285-1318.

[29]PrunierF, LaouafaF, DarveF, 2009. 3D bifurcation analysis in geomaterials: investigation of the second order work criterion. European Journal of Environmental and Civil Engineering, 13(2):135-147.

[30]QuintardM, WhitakerS, 1994a. Convection, dispersion, and interfacial transport of contaminants: homogeneous porous media. Advances in Water Resources, 17(4):221-239.

[31]QuintardM, WhitakerS, 1994b. Transport in ordered and disordered porous media I: the cellular average and the use of weighting functions. Transport in Porous Media, 14(2):163-177.

[32]QuintardM, WhitakerS, 1999. Dissolution of an immobile phase during flow in porous media. Industrial & Engineering Chemistry Research, 38(3):833-844.

[33]SwiftG, ReddishD, 2002. Stability problems associated with an abandoned ironstone mine. Bulletin of Engineering Geology and the Environment, 61(3):227-239.

[34]ToulemontM, 1981. Evolution Actuelle des Massifs Gypseux par Lessivage-Cas des Gypses Lutétiens de la Région Parisienne, France. IFSTTAR, France (in French).

[35]ToulemontM, 1987. Les Risques D’instabilité Liés au Karst Gypseux Lutétien de la Région Parisienne‍–‍Prévision en Cartographie. IFSTTAR, France (in French).

[36]TryggvasonG, BunnerB, EsmaeeliA, et al., 2001. A front-tracking method for the computations of multiphase flow. Journal of Computational Physics, 169(2):708-759.

[37]WalthamT, BellFG, CulshawMG, 2005. Sinkholes and Subsidence: Karst and Cavernous Rocks in Engineering and Construction. Springer, Berlin, Germany.

[38]WangSJ, ChengZC, ZhangY, et al., 2021. Unstable density-driven convection of CO2 in homogeneous and heterogeneous porous media with implications for deep saline aquifers. Water Resources Research, 57(3):e2020WR028132.

[39]WhitakerS, 1999. The Method of Volume Averaging. Springer, Dordrecht, the Netherlands.

[40]YangJ, YinZY, LaouafaF, et al., 2020. Three-dimensional hydromechanical modeling of internal erosion in dike-on-foundation. International Journal for Numerical and Analytical Methods in Geomechanics, 44(8):1200-1218.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE