CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-11-14
Cited: 0
Clicked: 1038
Li WANG, Boyi ZHANG, Jian ZHANG, Yuexin JIANG, Wei WANG, Gaohui WU. Experimental investigation on cenosphere-aluminum syntactic foam-filled tubes under axial impact loading[J]. Journal of Zhejiang University Science A, 2023, 24(11): 978-990.
@article{title="Experimental investigation on cenosphere-aluminum syntactic foam-filled tubes under axial impact loading",
author="Li WANG, Boyi ZHANG, Jian ZHANG, Yuexin JIANG, Wei WANG, Gaohui WU",
journal="Journal of Zhejiang University Science A",
volume="24",
number="11",
pages="978-990",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200430"
}
%0 Journal Article
%T Experimental investigation on cenosphere-aluminum syntactic foam-filled tubes under axial impact loading
%A Li WANG
%A Boyi ZHANG
%A Jian ZHANG
%A Yuexin JIANG
%A Wei WANG
%A Gaohui WU
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 11
%P 978-990
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200430
TY - JOUR
T1 - Experimental investigation on cenosphere-aluminum syntactic foam-filled tubes under axial impact loading
A1 - Li WANG
A1 - Boyi ZHANG
A1 - Jian ZHANG
A1 - Yuexin JIANG
A1 - Wei WANG
A1 - Gaohui WU
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 11
SP - 978
EP - 990
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200430
Abstract: A new syntactic foam material was prepared by screening three different average particle sizes of cenospheres (150, 200, and 300 μm) from industrial waste fly ash. Axial impact testing on syntactic foam filler and foam-filled tubes was conducted using a drop hammer test machine. The effects of parameters, such as the size of cenospheres and the impact velocity, on the mechanism of deformation, mechanical characteristics, and capacity for energy absorption of the specimen were investigated. On this basis, the differences in compressive properties exhibited by the syntactic foam-filled tubes under the two loading conditions were investigated. The results indicate that with the decrease in the average diameter of cenospheres, the initial peak crushing load and mean crushing load of foam-filled tubes increase, while the compression efficiency decreases. The specific energy absorption (SEA) of the syntactic foam-filled tube can reach 25 J/g. With the increase of impact velocity, the SEA of the specimen increases slightly. It was demonstrated that the syntactic foam-filled tube exhibits a higher effective energy absorption ratio under impact loading compared to quasi-static loading.
[1]AbediMM, NiknejadA, LiaghatGH, et al, 2018. Foam-filled grooved tubes with circular cross section under axial compression: an experimental study. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 42(4):401-413.
[2]Braszczyńska-MalikKN, KamieniakJ, 2017. AZ91 magnesium matrix foam composites with fly ash cenospheres fabricated by negative pressure infiltration technique. Materials Characterization, 128:209-216.
[3]DjamaluddinF, AbdullahS, AriffinAK, et al., 2015. Optimization of foam-filled double circular tubes under axial and oblique impact loading conditions. Thin-Walled Structures, 87:1-11.
[4]DoddamaniM, Kishore, ShunmugasamyVC, et al., 2015. Compressive and flexural properties of functionally graded fly ash cenosphere–epoxy resin syntactic foams. Polymer Composites, 36(4):685-693.
[5]DuarteI, Krstulović-OparaL, VesenjakM, 2018. Axial crush behaviour of the aluminium alloy in-situ foam filled tubes with very low wall thickness. Composite Structures, 192:184-192.
[6]FerdynusM, KotełkoM, UrbaniakM, 2019. Crashworthiness performance of thin-walled prismatic tubes with corner dents under axial impact–numerical and experimental study. Thin-Walled Structures, 144:106239.
[7]GarciaCD, ShahapurkarK, DoddamaniM, et al., 2018. Effect of arctic environment on flexural behavior of fly ash cenosphere reinforced epoxy syntactic foams. Composites Part B: Engineering, 151:265-273.
[8]GhahremanzadehZ, PirmohammadS, 2023. Crashworthiness performance of square, pentagonal, and hexagonal thin-walled structures with a new sectional design. Mechanics of Advanced Materials and Structures, 30(12):2353-2370.
[9]GhamarianA, AzarakhshS, 2019. Axial crushing analysis of polyurethane foam-filled combined thin-walled structures: experimental and numerical analysis. International Journal of Crashworthiness, 24(6):632-644.
[10]GulerMA, CeritME, BayramB, et al., 2010. The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading. International Journal of Crashworthiness, 15(4):377-390.
[11]HanssenAG, LangsethM, HopperstadOS, 2000. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. International Journal of Impact Engineering, 24(5):475-507.
[12]HouSJ, LiQ, LongSY, et al., 2007. Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria. Finite Elements in Analysis and Design, 43(6-7):555-565.
[13]HuDY, WangYZ, SongB, et al., 2018. Energy absorption characteristics of a foam-filled tri-tube under axial quasi-static loading: experiment and numerical simulation. International Journal of Crashworthiness, 23(4):417-432.
[14]HusseinRD, RuanD, LuGX, et al., 2017. Crushing response of square aluminium tubes filled with polyurethane foam and aluminium honeycomb. Thin-Walled Structures, 110:140-154.
[15]KeményA, MovahediN, FiedlerT, et al., 2022. The influence of infiltration casting technique on properties of metal syntactic foams and their foam-filled tube structures. Materials Science and Engineering: A, 852:143706.
[16]LinulE, MovahediN, MarsavinaL, 2018. The temperature and anisotropy effect on compressive behavior of cylindrical closed-cell aluminum-alloy foams. Journal of Alloys and Compounds, 740:1172-1179.
[17]LiuQ, FuJ, WangJS, et al., 2017. Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam. Composites Part B: Engineering, 130:236-247.
[18]LiuZF, HuangZC, QinQH, 2017. Experimental and theoretical investigations on lateral crushing of aluminum foam-filled circular tubes. Composite Structures, 175:19-27.
[19]ManakariV, ParandeG, GuptaM, 2016. Effects of hollow fly-ash particles on the properties of magnesium matrix syntactic foams: a review. Materials Performance and Characterization, 5(1):116-131.
[20]MansorMA, AhmadZ, AbdullahMR, 2022. Crashworthiness capability of thin-walled fibre metal laminate tubes under axial crushing. Engineering Structures, 252:113660.
[21]MohammadihaO, GharibluH, 2018. Crashworthiness study and optimisation of free inversion foam-filled tubes under dynamic loading. International Journal of Crashworthiness, 23(6):605-617.
[22]MondalDP, DasS, RamakrishnanN, et al., 2009. Cenosphere filled aluminum syntactic foam made through stir-casting technique. Composites Part A: Applied Science and Manufacturing, 40(3):279-288.
[23]MovahediN, LinulE, 2017. Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions. Materials Letters, 206:182-184.
[24]MovahediN, LinulE, 2021. Radial crushing response of ex-situ foam-filled tubes at elevated temperatures. Composite Structures, 277:114634.
[25]MovahediN, LinulE, MarsavinaL, 2018. The temperature effect on the compressive behavior of closed-cell aluminum-alloy foams. Journal of Materials Engineering and Performance, 27(1):99-108.
[26]MovahediN, FiedlerT, TaşdemirciA, et al., 2022. Impact loading of functionally graded metal syntactic foams. Materials Science and Engineering: A, 839:142831.
[27]PirmohammadS, Ahmadi-SaravaniS, ZakaviSJ, 2019. Crashworthiness optimization design of foam-filled tapered decagonal structures subjected to axial and oblique impacts. Journal of Central South University, 26(10):2729-2745.
[28]SadighiA, AzimiMB, AsgariM, et al., 2022. Crashworthiness of hybrid composite-metal tubes with lateral corrugations in axial and oblique loadings. International Journal of Crashworthiness, 27(6):1813-1829.
[29]SalehiM, MirbagheriSMH, RamianiAJ, 2021. Efficient energy absorption of functionally-graded metallic foam-filled tubes under impact loading. Transactions of Nonferrous Metals Society of China, 31(1):92-110.
[30]SarkabiriB, JahanA, RezvaniMJ, 2017. Crashworthiness multi-objective optimization of the thin-walled grooved conical tubes filled with polyurethane foam. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(7):2721-2734.
[31]SuMM, WangH, HaoH, 2019. Axial and radial compressive properties of alumina-aluminum matrix syntactic foam filled thin-walled tubes. Composite Structures, 226:111197.
[32]SunGY, LiGY, HouSJ, et al., 2010. Crashworthiness design for functionally graded foam-filled thin-walled structures. Materials Science and Engineering: A, 527(7-8):1911-1919.
[33]SunGY, LiSF, LiuQ, et al., 2016. Experimental study on crashworthiness of empty/aluminum foam/honeycomb-filled CFRP tubes. Composite Structures, 152:969-993.
[34]SunGY, LiSF, LiGY, et al., 2018. On crashing behaviors of aluminium/CFRP tubes subjected to axial and oblique loading: an experimental study. Composites Part B: Engineering, 145:47-56.
[35]WangL, ZhangBY, ZhangJ, et al., 2021. Deformation and energy absorption properties of cenosphere-aluminum syntactic foam-filled tubes under axial compression. Thin-Walled Structures, 160:107364.
[36]WangZ, JinXH, LiQ, et al., 2019. On crashworthiness design of hybrid metal-composite structures. International Journal of Mechanical Sciences, 171:105380.
[37]WuSY, LiGY, SunGY, et al., 2016. Crashworthiness analysis and optimization of sinusoidal corrugation tube. Thin-Walled Structures, 105:121-134.
[38]XuBY, SunGY, WuS, et al., 2017. Crashworthiness analysis and optimization of Fourier varying section tubes. International Journal of Non-Linear Mechanics, 92:41-58.
[39]YanLB, ChouwN, JayaramanK, 2014. Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes. Composites Part B: Engineering, 63:15-26.
[40]ZhaYB, WangS, MaQH, et al., 2022. Study on the axial impact of Al-CFRP thin-walled tubes with induced design. Polymer Composites, 43(7):4660-4686.
[41]ZhangBY, LinYF, LiS, et al., 2016. Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams. Composites Part B: Engineering, 98:288-296.
[42]ZhangBY, ZhangJ, WangL, et al., 2021. Bending behavior of cenosphere aluminum matrix syntactic foam-filled circular tubes. Engineering Structures, 243:112650.
[43]ZhangZY, SunW, ZhaoYS, et al., 2018. Crashworthiness of different composite tubes by experiments and simulations. Composites Part B: Engineering, 143:86-95.
[44]ZouX, GaoGJ, DongHP, et al., 2017. Crashworthiness analysis and structural optimisation of multi-cell square tubes under axial and oblique loads. International Journal of Crashworthiness, 22(2):129-147.
Open peer comments: Debate/Discuss/Question/Opinion
<1>