CLC number: S963
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-01-06
Cited: 9
Clicked: 6553
Hong-gang TANG, Li-hong CHEN, Chao-geng XIAO, Tian-xing WU. Fatty acid profiles of muscle from large yellow croaker (Pseudosciaena crocea R.) of different age[J]. Journal of Zhejiang University Science B, 2009, 10(2): 154-158.
@article{title="Fatty acid profiles of muscle from large yellow croaker (Pseudosciaena crocea R.) of different age",
author="Hong-gang TANG, Li-hong CHEN, Chao-geng XIAO, Tian-xing WU",
journal="Journal of Zhejiang University Science B",
volume="10",
number="2",
pages="154-158",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0820176"
}
%0 Journal Article
%T Fatty acid profiles of muscle from large yellow croaker (Pseudosciaena crocea R.) of different age
%A Hong-gang TANG
%A Li-hong CHEN
%A Chao-geng XIAO
%A Tian-xing WU
%J Journal of Zhejiang University SCIENCE B
%V 10
%N 2
%P 154-158
%@ 1673-1581
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820176
TY - JOUR
T1 - Fatty acid profiles of muscle from large yellow croaker (Pseudosciaena crocea R.) of different age
A1 - Hong-gang TANG
A1 - Li-hong CHEN
A1 - Chao-geng XIAO
A1 - Tian-xing WU
J0 - Journal of Zhejiang University Science B
VL - 10
IS - 2
SP - 154
EP - 158
%@ 1673-1581
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820176
Abstract: We investigated the fatty acid profiles of muscle from large yellow croaker (Pseudosciaena crocea R.) of different age. One- and two-year-old fish were cultured in floating net cages and sampled randomly for analysis. Moisture, protein, lipid and ash contents were determined by methods of Association of Analytical Chemist (AOAC) International. fatty acid profile was determined by gas chromatography. Crude protein, fat, moisture and ash contents showed no significant differences between the two age groups. The contents of total polyunsaturated fatty acids and docosahexaenoic acid (DHA) were significantly higher and eicosapentaenoic acid (EPA) content was significantly lower in the two-year-old large yellow croaker than in the one-year-old (P<0.05). No significant differences were observed in the contents of total saturated fatty acids and monounsaturated fatty acids, or the ratio of n-3/n-6 fatty acids among the large yellow croakers of the two age groups. We conclude that large yellow croakers are good food sources of EPA and DHA.
[1] Ackman, R.G., 1989. Nutritional composition of fats in seafoods. Prog. Food Nutr. Sci., 13(3-4):161-241.
[2] Ai, Q., Mai, K., Zhang, L., Tan, B., Zhang, W., Xu, W., Li, H., 2007. Effects of dietary β-1,3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol., 22(4):394-402.
[3] Association of Analytical Chemist (AOAC) International, 1999. Official Methods of Analysis of the Association of Analytical Chemists International, 16 Ed. AOAC International, Gaithersburg, Maryland, USA.
[4] Bandarra, N.M., Batista, I., Nunes, M.L., Empis, J.M., Christie, W.W., 1997. Seasonal changes in lipid composition of Sardine (Sardine pilchardus). J. Food Sci., 62(1):40-42.
[5] Bligh, E.C., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37(8):911-917.
[6] Chen, I.C., Chapman, F.A., Wei, C.I., Portier, K.M., O′Keefe, S.F., 1995. Differentiation of cultured and wild sturgeon (Acipenser oxyrinchus desotoi) based on fatty acid composition. J. Food Sci., 60(3):631-635.
[7] Czesny, S., Kolkovski, S., Dabrowski, K., Culver, D., 1999. Growth, survival, and quality of juvenile walleye Stizostedion vitreum as influenced by n-3 HUFA enriched Artemianauplii. Aquaculture, 178(1-2):103-115.
[8] Dunajski, E., 1980. Texture of fish muscle. J. Texture Studies, 10(4):301-318.
[9] Fenton, W.S., Hibbeln, J., Knable, M., 2000. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biological Psychiatry, 47(1):8-21.
[10] George, R., Bophal, R., 1995. Fat composition of free living and farmed sea species: implications for human diet and sea-farming techniques. Br. Food J., 97(8):19-22.
[11] Gruger, E.H.Jr., 1967. Fatty Acid Composition. In: Stansby, M.E. (Ed.), Fish Oils. AVI Publishing Co., Westport, CT, p.3.
[12] Hernández, M.D., Martinez, F.J., Garcia Garcia, B., 2002. Sensory evaluation of farmed sharpsnout seabream (Diploduspuntazzo). Aquac. Int., 9(6):519-529.
[13] Horrocks, L.A., Yeo, Y.K., 1999. Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res., 40(3): 211-225.
[14] Jian, J., Wu, Z., 2003. Effects of traditional Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosciaena crocea (Richardson). Aquaculture, 218(1-4):1-9.
[15] Johnston, I.A., 1999. Muscle development and growth: potential implications for flesh quality in fish. Aquaculture, 177(1-4):99-115.
[16] Karahadian, C., Fowler, K.P., Cox, D.H., 1995. Comparison of chemical composition of striped bass (Morone saxatilis) from three Chesapeake Bay tributaries with those of two aquaculture hybrid striped bass types. Food Chem., 54(4):409-418.
[17] Kiessling, A., Pickova, J., Johansson, L., Åsgård, T., Storebakken, T., Kiessling, K.H., 2001. Changes in fatty acid composition in muscle and adipose tissue of farmed rainbow trout (Oncorhynchus mykiss) in relation to ration and age. Food Chem., 73(3):271-284.
[18] Mai, K., Wan, J., Ai, Q., Xu, W., Liufu, Z., Zhang, L., Zhang, C., Li, H., 2006. Dietary methionine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture, 253(1-4):564-572.
[19] Mnari, A., Bouhlel, I., Chraief, I., Hammami, M., Romdhane, M.S., El Cafsi, M., Chaouch, A., 2007. Fatty acids in muscles and liver of Tunisian wild and farmed gilthead sea bream, Sparus aurata. Food Chem., 100(4): 1393-1397.
[20] Moreira, A.B., Visentainer, J.V., de Souza, N.E., Matsushita, M., 2001. Fatty acids profile and cholesterol contents of three Brazilian Brycon freshwater fishes. J. Food Comp. Anal., 14(6):565-574.
[21] Mourente, G., Tocher, D.R., Diaz-Salvago, E., Grau, A., Pastor, E., 1999. Study of the n-3 highly unsaturated fatty acids requirement and antioxidant status of Dentex dentex larvae at the Artemia feeding stage. Aquaculture, 179(1-4):291-307.
[22] Nestel, P., Shige, H., Pomeroy, S., Cehun, M., Abbey, M., Raederstorff, D., 2002. The n-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid increase systemic arterial compliance in humans. Am. J. Clin. Nutr., 76(2): 326-330.
[23] Økland, H.M., Stoknes, I.S., Remme, J.F., Kjerstad, M., Synnes, M., 2005. Proximate composition, fatty acid and lipid class composition of the muscle from deep-sea teleosts and elasmobranchs. Comp. Biochem. Physiol. (Part B), 140(3):437-443.
[24] Özogul, Y., Özogul, F., 2007. Fatty acid profiles of commercially important fish species from the Mediterranean, Aegean and Black Seas. Food Chem., 100(4):1634-1638.
[25] Paleari, A., Beretta, G., Grimaldi, P., Vaini, F., 1997. Composition of muscle tissue of farmed sturgeon with particular reference to lipidic content. J. Appl. Ichthyol., 13(2):63-66.
[26] Pardini, R.S., 2006. Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem. Biol. Interact., 162(2):89-105.
[27] Puwastien, P., Judprasong, K., Kettwan, E., Vasanachitt, K., Nakngamanong, Y., Bhattacharjee, L., 1999. Proximate composition of raw and cooked Thai freshwater and marine fish. J. Food Comp. Anal., 12(1):9-16.
[28] Rahnan, S.A., Huah, T.S., Hassan, O., Daud, N.M., 1995. Fatty acid composition of some Malaysian freshwater fish. Food Chem., 54(1):45-49.
[29] Saito, H., Yamashiro, R., Alasalvar, C., Konno, T., 1999. Influence of diet on fatty acids of three subtropical fish, subfamily caesioninae (Caesio diagramma and C. tile) and family siganidae (Siganus canaliculatus). Lipids, 34(10):1073-1082.
[30] Schmidt, E.B., Arnesen, H., Caterina, R., Rasmussen, L.H., Kristensen, S.D., 2005. Marine n-3 polyunsaturated fatty acids and coronary heart disease. Part I. Background, epidemiology, animal data, effects on risk factors and safety. Thromb. Res., 115(3):163-170.
[31] Simopoulos, A.P., 2002. Omega-3 fatty acids in inflammation and autoimmune Diseases. J. Am. Coll. Nutr., 21(6): 495-505.
[32] Skonberg, D.I., Perkins, B.L., 2002. Nutrient composition of green crab (Carcinus maenus) leg meat and claw meat. Food Chem., 77(4):401-404.
[33] Tang, H., Wu, T., Zhao, Z., Pan, X., 2008. Effects of fish protein hydrolysate on growth performance and humoral immune response in large yellow croaker (Pseudosciaena crocea R.). J. Zhejiang Univ. Sci. B, 9(9):684-690.
[34] Ward, O.P., Singh, A., 2005. Omega-3/6 fatty acids: alternative sources of production. Process Biochem., 40(12): 3627-3652.
Open peer comments: Debate/Discuss/Question/Opinion
<1>