CLC number: S432; Q343
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 4
Clicked: 6273
Junhyun JEON, Jaehyuk CHOI, Jongsun PARK, Yong-Hwan LEE. Functional genomics in the rice blast fungus to unravel the fungal pathogenicity[J]. Journal of Zhejiang University Science B, 2008, 9(10): 747-752.
@article{title="Functional genomics in the rice blast fungus to unravel the fungal pathogenicity",
author="Junhyun JEON, Jaehyuk CHOI, Jongsun PARK, Yong-Hwan LEE",
journal="Journal of Zhejiang University Science B",
volume="9",
number="10",
pages="747-752",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0860014"
}
%0 Journal Article
%T Functional genomics in the rice blast fungus to unravel the fungal pathogenicity
%A Junhyun JEON
%A Jaehyuk CHOI
%A Jongsun PARK
%A Yong-Hwan LEE
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 10
%P 747-752
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0860014
TY - JOUR
T1 - Functional genomics in the rice blast fungus to unravel the fungal pathogenicity
A1 - Junhyun JEON
A1 - Jaehyuk CHOI
A1 - Jongsun PARK
A1 - Yong-Hwan LEE
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 10
SP - 747
EP - 752
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0860014
Abstract: A rapidly growing number of successful genome sequencing projects in plant pathogenic fungi greatly increase the demands for tools and methodologies to study fungal pathogenicity at genomic scale. Magnaporthe oryzae is an economically important plant pathogenic fungus whose genome is fully sequenced. Recently we have reported the development and application of functional genomics platform technologies in M. oryzae. This model approach would have many practical ramifications in design and implementation of upcoming functional genomics studies of filamentous fungi aimed at understanding fungal pathogenicity.
[1] Baker, E.J., Galloway, L., Jackson, B., Schmoyer, D., Snoddy, J., 2004. MuTrack: a genome analysis system for large-scale mutagenesis in the mouse. BMC Bioinformatics, 5(1):11.
[2] Betts, M.F., Tucker, S.L., Galadima, N., Meng, Y., Patel, G., Li, L., Donofrio, N., Floyd, A., Nolin, S., Brown, D., et al., 2007. Development of a high throughput transformation system for insertional mutagenesis in Magnaporthe oryzae. Fungal Genet. Biol., 44(10):1035-1049.
[3] Chen, X., Stone, M., Schlagnhaufer, C., Romaine, C.P., 2000. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl. Environ. Microbiol., 66(10):4510-4513.
[4] Choi, J., Park, J., Jeon, J., Chi, M.H., Goh, J., Yoo, S.Y., Park, J., Jung, K., Kim, H., Park, S.Y., et al., 2007. Genome-wide analysis of T-DNA integration into the chromosomes of Magnaporthe oryzae. Mol. Microbiol., 66(2):371-382.
[5] Couch, B.C., Kohn, L.M., 2002. A multilocus gene genealogy concordant with host preference indicates segregation of new species, Magnaporthe oryzae from M. grisea. Mycologia, 94(4):683-693.
[6] Dean, R.A., 1997. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol., 35(1):211-234.
[7] Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Kulkarni, R., Xu, J.R., Pan, H., et al., 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434(7036):980-986.
[8] de Groot, M.J., Bundock, P., Hooykaas, P.J., Beijersbergen, A.G., 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol., 16(9):839-842.
[9] Donofrio, N., Rajagopalon, R., Brown, D., Diener, S., Windham, D., Nolin, S., Floyd, A., Mitchell, T., Galadima, N., Tucker, S., et al., 2005. ‘PACLIMS’: a component LIM system for high-throughput functional genomic analysis. BMC Bioinformatics, 6(1):94.
[10] Foster, A.J., Jenkinson, J.M., Talbot, N.J., 2003. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. Embo. J., 22(2):225-235.
[11] Hamer, L., Adachi, K., Montenegro-Chamorro, M.V., Tanzer, M.M., Mahanty, S.K., Lo, C., Tarpey, R.W., Skalchunes, A.R., Heiniger, R.W., Frank, S.A., et al., 2001. Gene discovery and gene function assignment in filamentous fungi. Proc. Natl. Acad. Sci. USA, 98(9):5110-5115.
[12] Howard, R.J., Ferrari, M.A., Roach, D.H., Money, N.P., 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. USA, 88(24):11281-11284.
[13] Jeon, J., Park, S.Y., Chi, M.H., Choi, J., Park, J., Rho, H.S., Kim, S., Goh, J., Yoo, S., Choi, J., et al., 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet., 39(4):561-565.
[14] Kankanala, P., Czymmek, K., Valent, B., 2007. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell, 19(2):706-724.
[15] Lacroix, B., Tzfira, T., Vainstein, A., Citovsky, V., 2006. A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet., 22(1):29-37.
[16] Li, G., Zhou, Z., Liu, G., Zheng, F., He, C., 2007. Characterization of T-DNA insertion patterns in the genome of rice blast fungus Magnaporthe oryzae. Curr. Genet., 51(4):233-243.
[17] Meng, Y., Patel, G., Heist, M., Betts, M.F., Tucker, S.L., Galadima, N., Donofrio, N.M., Brown, D., Mitchell, T.K., Li, L., et al., 2007. A systematic analysis of T-DNA insertion events in Magnaporthe oryzae. Fungal Genet. Biol., 44(10):1050-1064.
[18] Michielse, C.B., Hooykaas, P.J., van den Hondel, C.A., Ram, A.F., 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genet., 48(1):1-17.
[19] Mullins, E.D., Kang, S., 2001. Transformation: a tool for studying fungal pathogens of plants. Cell Mol. Life Sci., 58(14):2043-2052.
[20] Ou, S.H., 1985. Rice Diseases, 2nd Ed. Commonwealth Mycological Institute, Kew, England.
[21] Piers, K.L., 1996. Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. USA, 93(4):1613-1618.
[22] Rho, H.S., Kang, S., Lee, Y.H., 2001. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol. Cells, 12:407-411.
[23] Sánchez, O., Navarro, R.E., Aguirre, J., 1998. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzymemediated integration (REMI). Mol. Gen. Genet., 258(1-2):89-94.
[24] Sesma, A., Osbourn, A.E., 2004. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431(7008):582-586.
[25] Sweigard, J.A., Carroll, A.M., Farrall, L., Chumley, F.G., Valent, B., 1998. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant Microbe Interact., 11(5):404-412.
[26] Talbot, N.J., 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol., 57(1):177-202.
[27] Valent, B., 1990. Rice blast as a model system for plant pathology. Phytopathology, 80(1):33-36.
[28] Villalba, F., Collemare, J., Landraud, P., Lambou, K., Brozek, V., Cirer, B., Morin, D., Bruel, C., Beffa, R., Lebrun, M.H., 2008. Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet. Biol., 45(1):68-75.
[29] Winnenburg, R., Baldwin, T.K., Urban, M., Rawlings, C., Kohler, J., Hammond-Kosack, K.E., 2006. PHI-base: a new database for pathogen host interactions. Nucleic. Acids Res., 34(90001):D459-D464.
[30] Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J.D., Bussey, H., et al., 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science, 285(5429):901-906.
[31] Zeigler, R.S., Leong, S.A., Teeng, P.S., 1994. Rice Blast Disease. CAB International, Wallingford.
Open peer comments: Debate/Discuss/Question/Opinion
<1>