Full Text:   <3338>

CLC number: Q78

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 3

Clicked: 7086

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2008 Vol.9 No.7 P.511-519

http://doi.org/10.1631/jzus.B0820015


Magnaporthe oryzae MTP1 gene encodes a type III transmembrane protein involved in conidiation and conidial germination


Author(s):  Qin LU, Jian-ping LU, Xiao-dong LI, Xiao-hong LIU, Hang MIN, Fu-cheng LIN

Affiliation(s):  College of Life Sciences, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   jplu@zju.edu.cn, fuchenglin@zju.edu.cn

Key Words:  Magnaporthe oryzae, Magnaporthe grisea, MTP1, cDNA, Gene knockout, Conidial germination


Share this article to: More |Next Article >>>

Qin LU, Jian-ping LU, Xiao-dong LI, Xiao-hong LIU, Hang MIN, Fu-cheng LIN. Magnaporthe oryzae MTP1 gene encodes a type III transmembrane protein involved in conidiation and conidial germination[J]. Journal of Zhejiang University Science B, 2008, 9(7): 511-519.

@article{title="Magnaporthe oryzae MTP1 gene encodes a type III transmembrane protein involved in conidiation and conidial germination",
author="Qin LU, Jian-ping LU, Xiao-dong LI, Xiao-hong LIU, Hang MIN, Fu-cheng LIN",
journal="Journal of Zhejiang University Science B",
volume="9",
number="7",
pages="511-519",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0820015"
}

%0 Journal Article
%T Magnaporthe oryzae MTP1 gene encodes a type III transmembrane protein involved in conidiation and conidial germination
%A Qin LU
%A Jian-ping LU
%A Xiao-dong LI
%A Xiao-hong LIU
%A Hang MIN
%A Fu-cheng LIN
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 7
%P 511-519
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820015

TY - JOUR
T1 - Magnaporthe oryzae MTP1 gene encodes a type III transmembrane protein involved in conidiation and conidial germination
A1 - Qin LU
A1 - Jian-ping LU
A1 - Xiao-dong LI
A1 - Xiao-hong LIU
A1 - Hang MIN
A1 - Fu-cheng LIN
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 7
SP - 511
EP - 519
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820015


Abstract: 
In this study the MTP1 gene, encoding a type III integral transmembrane protein, was isolated from the rice blast fungus Magnaporthe oryzae. The Mtp1 protein is 520 amino acids long and is comparable to the Ytp1 protein of Saccharomyces cerevisiae with 46% sequence similarity. Prediction programs and MTP1-GFP (green fluorescent protein) fusion expression results indicate that Mtp1 is a protein located at several membranes in the cytoplasm. The functions of the MTP1 gene in the growth and development of the fungus were studied using an MTP1 gene knockout mutant. The MTP1 gene was primarily expressed at the hyphal and conidial stages and is necessary for conidiation and conidial germination, but is not required for pathogenicity. The ΔMTP1 mutant grew more efficiently than the wild type strain on non-fermentable carbon sources, implying that the MTP1 gene has a unique role in respiratory growth and carbon source use.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1] Adachi, K., Hamer, J.E., 1998. Divergent camp signaling pathways regulate growth and pathogenesis in the rice blast fungus. Magnaporthe grisea. Plant Cell, 10(8):1361-1373.

[2] Altschul, S.F., Madden, T.L., Schafferi, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic. Acids Res., 25(17):3389-3402.

[3] Bonman, J.M., Vergel, D.D.T., Khin, M.M., 1986. Physiologic specialization of Pyricularia oryzae in the Philippines. Plant Dis., 70(8):767-769.

[4] Carroll, A.M., Sweigard, J.A., Valent, B., 1994. Improved vectors for selecting resistance to hygromycin. Fungal Genet Newslett, 41:22.

[5] Choi, W., Dean, R.A., 1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell, 9(11):1973-1983.

[6] Clergeot, P.H., Gourgues, M., Cots, J., Laurans, F., Latorse, M.P., Pepin, R., Tharreau, D., Notteghem, J.L., Lebrun, M.H., 2001. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. PNAS, 98(12):6963-6968.

[7] Couch, B.C., Kohn, L.M., 2002. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia, 94(4):683-693.

[8] de Jong, J.C., McCormack, B.J., Smirnoff, N., Talbot, N.J., 1997. Glycerol generates turgor in rice blast. Nature, 389(6648):244-245.

[9] Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Kulkarni, R., Xu, J.R., Pan, H., et al., 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434(7036):980-986.

[10] DeZwaan, T.M., Carroll, A.M., Valent, B., Sweigard, J.A., 1999. Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell, 11(10):2013-2030.

[11] Dyrløv Bendtsen, J.D., Nielsen, H., von Heijne, G., Brunak, S., 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol., 340(4):783-795.

[12] Emanuelsson, O., Nielsen, H., Brunak, S., Heijne, G., 2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol., 300(4):1005-1016.

[13] Gronover, C.S., Kasulke, D., Tudzynski, P., Tudzynski, B., 2001. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol. Plant Microbe Interact., 14(11):1293-1302.

[14] Hamer, J.E., Givan, S., 1990. Genetic mapping with dispersed repeated sequences in the rice blast fungus: mapping the SMO locus. Mol. Gen. Genet., 223(3):487-495.

[15] Horton, P., Park, K.J., Obayashi, T., Nakai, K., 2006. Protein Subcellular Localization Prediction with Wolf Psort. Proceedings of the 4th Annual Asia Pacific Bioinformatics Conference APBC06, Taipei, Taiwan, p.39-48.

[16] Howard, R.J., Ferrari, M.A., Roach, D.H., Money, N.P., 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. PNAS, 88(24):11281-11284.

[17] Kikuma, T., Ohneda, M., Arioka, M., Kitamoto, K., 2006. Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae. Eukaryotic Cell, 5(8):1328-1336.

[18] Kim, S., Ahn, I.P., Rho, H.S., Lee, Y.H., 2005. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol. Microbiol., 57(5):1224-1237.

[19] Lee, K., Singh, P., Chung, W.C., Ash, J., Kim, T.S., Hang, L., Park, S., 2006. Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genet. Biol., 43(10):694-706.

[20] Lee, Y.H., Dean, R.A., 1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell, 5(6):693-700.

[21] Li, L., Xue, C., Bruno, K., Nishimura, M., Xu, J.R., 2004. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Mol. Plant Microbe Interact., 17(5):547-556.

[22] Liu, X.H., Lu, J.P., Zhang, L., Dong, B., Min, H., Lin, F.C., 2007. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryotic Cell, 6(6):997-1005.

[23] Lu, J.P., Liu, T.B., Lin, F.C., 2005a. Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridization. FEMS Microbiol. Lett., 245(1):131-137.

[24] Lu, J.P., Liu, T.B., Liu, X.Y., Lin, F.C., 2005b. Representative appressorium stage cDNA library of Magnaporthe grisea. J. Zhejiang Univ. Sci. B, 6(2):132-136.

[25] Lu, J.P., Feng, X.X., Liu, X.H., Lu, Q., Wang, H.K., Lin, F.C., 2007a. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea. Fungal Genet. Biol., 44(9):819-829.

[26] Lu, J.P., Duan, Z.B., Liu, T.B., Lin, F.C., 2007b. Cloning, sequencing and expression analysis of the NAR promoter activated during hyphal stage of Magnaporthe grisea. J. Zhejiang Univ. Sci. B, 8(9):661-665.

[27] Odenbach, D., Breth, B., Thines, E., Weber, R.W., Anke, H., Foster, A.J., 2007. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol. Microbiol., 64(2):293-307.

[28] Ou, S.H., 1985. Rice Diseases, 2nd Ed. Commonwealth Mycological Institute, Kew, UK.

[29] Pall, M.C., Brunelli, P., 1993. A series of six compact fungal transformation vectors containing polylinkers with multiple unique restriction sites. Fungal Genet Newslett, 40:59-62.

[30] Robertson, L.S., Causton, H.C., Young, R.A., Fink, G.R., 2000. The yeast A kinases differentially regulate iron uptake and respiratory function. PNAS, 97(11):5984-5988.

[31] Rost, B., Fariselli, P., Casadio, R., 1996. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Science, 5(8):1704-1718.

[32] Rost, B., Yachdav, G., Liu, J., 2004. The PredictProtein server. Nucleic Acids Research, 32(Web Server issue):W321-W326.

[33] Sambrook, J., Fritsch, E.F., Maniatis, T., 2002. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York, NY.

[34] Talbot, N.J., Ebbole, D.J., Hamer, J.E., 1993. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 5(11):1575-1590.

[35] Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22(22):4673-4680.

[36] Veneault-Fourrey, C., Barooah, M.K., Egan, M.J., Talbot, N.J., 2006a. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science, 312(5773):580-583.

[37] Veneault-Fourrey, C., Lambou, K., Lebrun, M.H., 2006b. Fungal Pls1 tetraspanins as key factors of penetration into host plants: a role in re-establishing polarized growth in the appressorium? FEMS Microbiol. Lett., 256(2):179-184.

[38] West, R.W.Jr., Crivellone, M.D., Ma, J., Thomas, S., 1996. Sequence of the Saccharomyces cerevisiae YTP1 gene encoding a deduced novel type-III transmembrane protein with domains of sequence similarity to mitochondrial electron-transport enzymes. Gene, 169(1):119-124.

[39] Xu, J.R., Hamer, J.E., 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev., 10(21):2696-2706.

[40] Zhao, X., Kim, Y., Park, G., Xu, J.R., 2005. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell, 17(4):1317-1329.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE