CLC number: R318.6
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-08-10
Cited: 1
Clicked: 5644
Peng Zan, Bang-hua Yang, Yong Shao, Guo-zheng Yan, Hua Liu. Electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter system[J]. Journal of Zhejiang University Science B, 2010, 11(12): 931-936.
@article{title="Electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter system",
author="Peng Zan, Bang-hua Yang, Yong Shao, Guo-zheng Yan, Hua Liu",
journal="Journal of Zhejiang University Science B",
volume="11",
number="12",
pages="931-936",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000058"
}
%0 Journal Article
%T Electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter system
%A Peng Zan
%A Bang-hua Yang
%A Yong Shao
%A Guo-zheng Yan
%A Hua Liu
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 12
%P 931-936
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000058
TY - JOUR
T1 - Electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter system
A1 - Peng Zan
A1 - Bang-hua Yang
A1 - Yong Shao
A1 - Guo-zheng Yan
A1 - Hua Liu
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 12
SP - 931
EP - 936
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000058
Abstract: This paper reports on the electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter. The coupling coils and human tissues, including the skin, fat, muscle, liver, and blood, were considered. specific absorption rate (SAR) and current density were analyzed by a finite-length solenoid model. First, SAR and current density as a function of frequency (10–107 Hz) for an emission current of 1.5 A were calculated under different tissue thickness. Then relations between SAR, current density, and five types of tissues under each frequency were deduced. As a result, both the SAR and current density were below the basic restrictions of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The results show that the analysis of these data is very important for developing the artificial anal sphincter system.
[1]Arai, K., Ninomiya, A., Ishigohka, T., Takano, K., Matsui, K., Michael, P.C., Vieira, R.F., Martovetsky, N.N., Kaiho, K., Nakajima, H., et al., 2002. Acoustic emission during DC operations of the ITER central solenoid model coil. IEEE Trans. Appl. Supercon., 12(1):504-507.
[2]Cristina, S., Parise, M., 2008. Calculation of EM Power Deposition for Exposure to Shortwave Induction Diathermy. IET 7th International Conference on Computation in Electromagnetics. Brighton, UK, p.208-209.
[3]Doll, A.F., Wischke, M., Geipel, A., Goldschmidtboeing, F., Ruthmann, O., Hopt, U.T., Schrag, H., Woias, P., 2007. A novel artificial sphincter prosthesis driven by a four-membrane silicon micropump. Sensor. Actuat. A: Phys., 139(1-2):203-209.
[4]Finlay, G., Richardson, W., Hajivassiliou, C.A., 2004. Outcome after implantation of a novel prosthetic anal sphincter in humans. Br. J. Surg., 91(11):1485-1492.
[5]Gabriel, C., Peyman, A., Grant, E.H., 2009. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol., 54(16):4863-4878.
[6]Gabriel, S., Lau, R.W., Gabriel, C., 1996. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol., 41(11):2271-2293.
[7]Guralnick, M.L., Webster, G.D., 2003. Transcorporal insertion of AMS800 artificial urinary sphincter. Atlas Urol. Clin., 11(1):83-87.
[8]ICNIRP Guideline, 1998. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys., 74(4):494-522.
[9]ICNIRP, 2009. Exposure to High Frequency Electromagnetic Fields, Biological Effects and Health Consequences (100 kHz–300 GHz). Available from http://www.icnirp.de/activities.htm [Accessed on Jan. 2, 2010]
[10]Kakubari, Y., Sato, F., Matsuki, H., Sato, T., Luo, Y., Takagi, T., Yambe, T., Nitta, S., 2003. Temperature control of SMA artificial anal sphincter. IEEE Trans. Magn., 39(5):3384-3386.
[11]Lehur, P.A., Roig, J.V., Duinslaeger, M., 2000. Artificial anal sphincter: prospective clinical and manometric evaluation. Dis. Colon Rectum, 43(8):1100-1106.
[12]Shiba, K., Nagato, T., Tsuji, T., Koshiji, K., 2008. Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue. IEEE Trans. Biomed. Eng., 55(7):1864-1871.
[13]Sullivan, D.M., Borup, D.T., Gandhi, O.P., 1987. Use of the finite-difference time-domain method in calculating EM absorption in human tissues. IEEE Trans. Biomed. Eng., 34(2):148-157.
[14]Tai, C.M., Liao, C.N., 2007. A physical model of solenoid inductors on silicon substrates. IEEE Trans. Microw. Theory Tech., 55(12):2579-2585.
[15]Zan, P., Yan, G.Z., Liu, H., 2008a. A novel artificial anal sphincter system based on transcutaneous energy transmission. High Technol. Lett., 14(4):423-428.
[16]Zan, P., Yan, G.Z., Liu, H., 2008b. Modeling of human colonic blood flow for a novel artificial anal sphincter system. J. Zhejiang Univ.-Sci. B, 9(9):734-738.
[17]Zan, P., Yan, G.Z., Liu, H., Luo, N., Zhao, Y., 2009. Adaptive transcutaneous power delivery for an artificial anal sphincter system. J. Med. Eng. Technol., 33(2):136-141.
[18]Zhao, X.L., Kinouchi, Y., Yasuno, E., Gao, D., Iritani, T., Morimoto, T., Takeuchi, M., 2004. A new method for noninvasive measurement of multilayer tissue conductivity and structure using divided electrodes. IEEE Trans. Biomed. Eng., 51(2):362-370.
Open peer comments: Debate/Discuss/Question/Opinion
<1>