CLC number: R54
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-07-03
Cited: 2
Clicked: 6356
Shu-qin Ying, Mei-xiang Xiang, Lu Fang, Jian-an Wang. Temporal changes in circulating P-selectin, plasminogen activator inhibitor-1, magnesium, and creatine kinase after percutaneous coronary intervention[J]. Journal of Zhejiang University Science B, 2010, 11(8): 575-582.
@article{title="Temporal changes in circulating P-selectin, plasminogen activator inhibitor-1, magnesium, and creatine kinase after percutaneous coronary intervention",
author="Shu-qin Ying, Mei-xiang Xiang, Lu Fang, Jian-an Wang",
journal="Journal of Zhejiang University Science B",
volume="11",
number="8",
pages="575-582",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1001006"
}
%0 Journal Article
%T Temporal changes in circulating P-selectin, plasminogen activator inhibitor-1, magnesium, and creatine kinase after percutaneous coronary intervention
%A Shu-qin Ying
%A Mei-xiang Xiang
%A Lu Fang
%A Jian-an Wang
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 8
%P 575-582
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1001006
TY - JOUR
T1 - Temporal changes in circulating P-selectin, plasminogen activator inhibitor-1, magnesium, and creatine kinase after percutaneous coronary intervention
A1 - Shu-qin Ying
A1 - Mei-xiang Xiang
A1 - Lu Fang
A1 - Jian-an Wang
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 8
SP - 575
EP - 582
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1001006
Abstract: Objective: This study aims to determine the mechanisms underlying restenosis and ischemia-reperfusion injury of the myocardium after percutaneous coronary intervention (PCI). Methods: The present study examined serial changes (5 min, 30 min, 2 h, 6 h, and 24 h after PCI) in circulating p-selectin, plasminogen activator inhibitor-1 (PAI-1), magnesium (Mg), and creatine kinase-myocardial band fraction (CK-MB) levels, which may be associated with restenosis and myocardial injury in patients undergoing PCI. The occurrence rates of major adverse cardiovascular events were collected over a six-month follow-up. Results: PCI induced an early elevation of p-selectin, which correlated positively with the inflation pressure used in the PCI procedure. PCI also caused a significant and sustained decrease in serum Mg in PCI patients, without an effect on PAI-1. An increase in CK-MB was observed in PCI patients, although values were within normal reference range. In addition, elevated p-selectin and decreased Mg measured shortly after the coronary angioplasty procedure were associated with recurrent treatment and heart failure, respectively. Conclusions: Our study demonstrates that PCI induces temporal changes of p-selectin, Mg, and CK-MB, which may be involved in restenosis and ischemia-reperfusion injury. These findings highlight the need for using antiplatelet therapy and Mg to reduce the risks associated with PCI.
[1]Abdelmeguid, A.E., Topol, E.J., 1996. The myth of the myocardial ‘infarctlet’ during percutaneous coronary revascularization procedures. Circulation, 94(12):3369-3375.
[2]Ambrosio, G., Tritto, I., 1999. Reperfusion injury: experimental evidence and clinical implications. American Heart Journal, 138(2):S69-S75.
[3]Bhoday, J., de Silva, S., Xu, Q., 2006. The molecular mechanisms of vascular restenosis: which genes are crucial? Current Vascular Pharmacology, 4(3):269-275.
[4]Califf, R.M., Abdelmeguid, A.E., Kuntz, R.E., Popma, J.J., Davidson, C.J., Cohen, E.A., Kleiman, N.S., Mahaffey, K.W., Topol, E.J., Pepine, C.J., et al., 1998. Myonecrosis after revascularization procedures. Journal of the American College of Cardiology, 31(2):241-251.
[5]Dehmer, G.J., Nichols, T.C., Bode, A.P., Liles, D., Sigman, J., Li, S., Koch, G., Tate, D.A., Griggs, T.R., 1997. Assessment of platelet activation by coronary sinus blood sampling during balloon angioplasty and directional coronary atherectomy. The American Journal of Cardiology, 80(7):871-877.
[6]Gawaz, M., Reininger, A., Neumann, F.J., 1996. Platelet function and platelet-leukocyte adhesion in symptomatic coronary heart disease. Effects of intravenous magnesium. Thrombosis Research, 83(5):341-349.
[7]Gruntzig, A., 1978. Transluminal dilatation of coronary-artery stenosis. Lancet, 311(8058):263.
[8]Headrick, J.P., McKirdy, J.C., Willis, R.J., 1998. Functional and metabolic effects of extracellular magnesium in normoxic and ischemic myocardium. AJP-Heart and Circulatory Physiology, 275(3 Pt 2):H917-H929.
[9]Kanaparti, P.K., Brown, D.L., 2000. Relation between coronary atherosclerotic plaque burden and cardiac enzyme elevation following percutaneous coronary intervention. The American Journal of Cardiology, 86(6):619-622.
[10]Katsaros, K.M., Speidl, W.S., Kastl, S.P., Zorn, G., Huber, K., Maurer, G., Glogar, D., Wojta, J., Christ, G., 2008. Plasminogen activator inhibitor-1 predicts coronary in-stent restenosis of drug-eluting stents. Journal of Thrombosis and Haemostasis, 6(3):508-513.
[11]Leor, J., Kloner, R.A., 1995. An experimental model examining the role of magnesium in the therapy of acute myocardial infarction. The American Journal of Cardiology, 75(17):1294-1295.
[12]Li-Saw-Hee, F.L., Blann, A.D., Lip, G.Y., 2000. A cross-sectional and diurnal study of thrombogenesis among patients with chronic atrial fibrillation. Journal of the American College of Cardiology, 35(7):1926-1931.
[13]Ma, X., Zhang, X., Li, C., Luo, M., 2006. Effect of postconditioning on coronary blood flow velocity and endothelial function and LV recovery after myocardial infarction. Journal of Interventional Cardiology, 19(5):367-375.
[14]Moens, A.L., Claeys, M.J., Timmermans, J.P., Vrints, C.J., 2005. Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. International Journal of Cardiology, 100(2):179-190.
[15]Monnink, S.H., Tio, R.A., Veeger, N.J., Amoroso, G., van Boven, A.J., van Gilst, W.H., 2003. Exercise-induced ischemia after successful percutaneous coronary intervention is related to distal coronary endothelial dysfunction. Journal of Investigative Medicine, 51(4):221-226.
[16]Murasaki, K., Kawana, M., Murasaki, S., Tsurumi, Y., Tanoue, K., Hagiwara, N., Kasanuki, H., 2007. High P-selectin expression and low CD36 occupancy on circulating platelets are strong predictors of restenosis after coronary stenting in patients with coronary artery disease. Heart and Vessels, 22(4):229-236.
[17]Murthi, S.B., Wise, R.M., Weglicki, W.B., Komarov, A.M., Kramer, J.H., 2003. Mg-gluconate provides superior protection against postischemic dysfunction and oxidative injury compared to Mg-sulfate. Molecular and Cellular Biochemistry, 245(1-2):141-148.
[18]Nakashima, H., Katayama, T., Honda, Y., Suzuki, S., Yano, K., 2004. Cardioprotective effects of magnesium sulfate in patients undergoing primary coronary angioplasty for acute myocardial infarction. Circulation Journal, 68(1):23-28.
[19]Osmancik, P.P., Bednar, F., Pavkova, L., Tousek, P., Stros, P., Jirasek, K., 2008. Higher platelet activity is present in patients with restenosis after percutaneous coronary intervention compared with patients with an occlusion of coronary artery bypass graft. Blood Coagulation & Fibrinolysis, 19(8):807-812.
[20]Paganelli, F., Alessi, M.C., Morange, P., Maixent, J.M., Levy, S., Vague, I.J., 1999. Relationship of plasminogen activator inhibitor-1 levels following thrombolytic therapy with rt-PA as compared to streptokinase and patency of infarct related coronary artery. Thrombosis and Haemostasis, 82(1):104-108.
[21]Park, J.L., Lucchesi, B.R., 1999. Mechanisms of myocardial reperfusion injury. The Annals of Thoracic Surgery, 68(5):1905-1912.
[22]Pendyala, L., Jabara, R., Shinke, T., Chronos, N., Robinson, K., Li, J., Hou, D., 2008. Drug-eluting stents: present and future. Cardiovascular & Hematological Agents in Medicinal Chemistry, 6(2):105-115.
[23]Piper, H.M., Garcia-Dorado, D., Ovize, M., 1998. A fresh look at reperfusion injury. Cardiovascular Research, 38(2):291-300.
[24]Ravn, H.B., Moeldrup, U., Brookes, C.I., Ilkjaer, L.B., White, P., Chew, M., Jensen, L., Johnsen, S., Birk-Soerensen, L., Hjortdal, V.E., 1999. Intravenous magnesium reduces infarct size after ischemia/reperfusion injury combined with a thrombogenic lesion in the left anterior descending artery. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(3):569-574.
[25]Roth, A., Eshchar, Y., Keren, G., Kerbel, S., Harsat, A., Villa, Y., Laniado, S., Miller, H.I., 1994. Effect of magnesium on restenosis after percutaneous transluminal coronary angioplasty: a clinical and angiographic evaluation in a randomized patient population. A pilot study. European Heart Journal, 15(9):1164-1173.
[26]Rukshin, V., Santos, R., Gheorghiu, M., Shah, P.K., Kar, S., Padmanabhan, S., Azarbal, B., Tsang, V.T., Makkar, R., Samuels, B., et al., 2003. A prospective, nonrandomized, open-labeled pilot study investigating the use of magnesium in patients undergoing nonacute percutaneous coronary intervention with stent implantation. Journal of Cardiovascular Pharmacology and Therapeutics, 8(3):193-200.
[27]Ryzen, E., Elkayam, U., Rude, R.K., 1986. Low blood mononuclear cell magnesium in intensive cardiac care unit patients. American Heart Journal, 111(3):475-480.
[28]Satur, C.M., Anderson, J.R., Jennings, A., Newton, K., Martin, P.G., Nair, U., Walker, D.R., 1994. Magnesium flux caused by coronary artery bypass operation: three patterns of deficiency. The Annals of Thoracic Surgery, 58(6):1674-1678.
[29]Serruys, P.W., Luijten, H.E., Beatt, K.J., Geuskens, R., de Feyter, P.J., van den Brand, M., Reiber, J.H., ten Katen, H.J., van Es, G.A., Hugenholtz, P.G., 1988. Incidence of restenosis after successful coronary angioplasty: a time- related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation, 77(2):361-371.
[30]Shechter, M., Merz, C.N., Paul Labrador, M.J., Meisel, S.R., Rude, R.K., Molloy, M.D., Dwyer, J.H., Shah, P.K., Kaul, S., 1999. Oral magnesium supplementation inhibits platelet-dependent thrombosis in patients with coronary artery disease. The American Journal of Cardiology, 84(2):152-156.
[31]Shechter, M., Merz, C.N., Rude, R.K., Paul Labrador, M.J., Meisel, S.R., Shah, P.K., Kaul, S., 2000. Low intracellular magnesium levels promote platelet-dependent thrombosis in patients with coronary artery disease. American Heart Journal, 140(2):212-218.
[32]Stone, G.W., Aronow, H.D., 2006. Long-term care after percutaneous coronary intervention: focus on the role of antiplatelet therapy. Mayo Clinic Proceedings, 81(5):641-652.
[33]Thanyasiri, P., Kathir, K., Celermajer, D.S., Adams, M.R., 2007. Endothelial dysfunction and restenosis following percutaneous coronary intervention. International Journal of Cardiology, 119(3):362-367.
[34]Tschoepe, D., Schultheiss, H.P., Kolarov, P., Schwippert, B., Dannehl, K., Nieuwenhuis, H.K., Kehrel, B., Strauer, B., Gries, F.A., 1993. Platelet membrane activation markers are predictive for increased risk of acute ischemic events after PTCA. Circulation, 88(1):37-42.
[35]Ying, S.Q., Fang, L., Xiang, M.X., Xu, G., Shan, J., Wang, J.A., 2007. Protective effects of magnesium against ischaemia-reperfusion injury through inhibition of P-selectin in rats. Clinical and Experimental Pharmacology and Physiology, 34(12):1234-1239.
Open peer comments: Debate/Discuss/Question/Opinion
<1>