CLC number: O69
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-05-09
Cited: 9
Clicked: 6885
Xiao-ping Hong, Yan Zhu, Yan-zhen Zhang. Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/ multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine[J]. Journal of Zhejiang University Science B, 2012, 13(6): 503-510.
@article{title="Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/ multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine",
author="Xiao-ping Hong, Yan Zhu, Yan-zhen Zhang",
journal="Journal of Zhejiang University Science B",
volume="13",
number="6",
pages="503-510",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100337"
}
%0 Journal Article
%T Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/ multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine
%A Xiao-ping Hong
%A Yan Zhu
%A Yan-zhen Zhang
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 6
%P 503-510
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100337
TY - JOUR
T1 - Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/ multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine
A1 - Xiao-ping Hong
A1 - Yan Zhu
A1 - Yan-zhen Zhang
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 6
SP - 503
EP - 510
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100337
Abstract: A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoIITAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described. This electrode showed a very attractive performance by combining the advantages of CoIITAPc, MWCNTs, and Nafion. Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode, the electrocatalytic activity of poly(CoIITAPc)-coated MWCNTs-Nafion GCE generated greatly improved electrochemical detections toward sulfadiazine including low oxidation potential, high current responses, and good anti-fouling performance. The oxidation peak currents of sulfadiazine obtained on the new modified electrode increased linearly while increasing the concentration of sulfadiazine from 0.5 to 43.5 μmol/L with the detection limit of 0.17 μmol/L.
[1]Assil, H.I., Sheth, H., Sporns, P., 1992. An ELISA for sulfonamide detection using affinity-purified polyclonal antibodies. Food Res. Int., 25(5):343-353.
[2]Braga, O.C., Campestrini, I., Vieira, I.C., Spinelli, A., 2010. Sulfadiazine determination in pharmaceuticals by electrochemical reduction on a glassy carbon electrode. J. Braz. Chem. Soc., 21(5):813-820.
[3]Campestrini, I., Braga, O.C., Vieira, I.C., Spinelli, A., 2010. Application of bismuth-film electrode for cathodic electroanalytical determination of sulfadiazine. Electrochim. Acta, 55(17):4970-4975.
[4]Catalano-Pons, C., Bargy, S., Schlecht, D., Tabone, M.D., Deschênes, G., Bensman, A., Ulinski, T., 2004. Sulfadiazine-induced nephrolithiasis in children. Pediatr. Nephrol., 19(8):928-932.
[5]Chen, R.J., Zhang, Y., Wang, D., Dai, H., 2001. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. Vol., 123(16):3838-3839.
[6]Chiavarino, B., Crestoni, M.E., Dimarzio, A., Fornarini, S., 1998. Determination of sulfonamide antibiotics by gas chromatography coupled with atomic emission detection. J. Chromatogr. B, 706(2):269-277.
[7]Conley, J.M., Symes, S.J., Kindelberger, S.A., Richards, S., 2008. Rapid liquid chromatography-tandem mass spectrometry method for the determination of a broad mixture of pharmaceuticals in surface water. J. Chromatogr. A, 1185(2):206-215.
[8]Diaz, T.G., Cabanillas, A.G., Valenzuela, M.I.A., Sallinas, F., 1996. Polarographic behaviour of sulfadiazine, sulfamerazine, sulfamethazine and their mixtures. Use of partial least squares in the resolution of the non-additive signals of these compounds. Analyst, 121(4):547-552.
[9]Díaz-Cruz, M.S., de Alda, M.J.L., Barceló, D., 2003. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Anal. Chem., 22(6):340-351.
[10]Evtugyn, G.A., Goldfarb, O.E., Budnikov, H.C., Ivanov, A.N., Vinter, V.G., 2005. Amperometric DNA-peroxidase sensor for the detection of pharmaceutical preparations. Sensors, 5(6):364-376.
[11]Göbel, A., McArdell, C.S., Suter, M.J.F., Giger, W., 2004. Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry. Anal. Chem., 76(16):4756-4764.
[12]Hartig, C., Storm, T., Jekel, M., 1999. Detection and identification of sulfonamide drugs in municipal waste water by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J. Chromatogr. A, 854(1-2):163-173.
[13]Hasebe, K., Osteryoung, J., 1975. Differential pulse polarographic determination of some carcinogenic nitrosamines. Anal. Chem., 47(14):2412-2418.
[14]Issac, S., Kumar, K.G., 2009. Voltammetric determination of sulfamethoxazole at a multiwalled carbon nanotube modified glassy carbon sensor and its application studies. Drug Test. Anal., 1(7):350-354.
[15]Joseph, R., Kumar, K.G., 2010. Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20-tetrakis(3-methoxy-4-hydroxy phenyl)porphyrinato] Cu(III) modified carbon paste sensor. Drug Test. Anal., 2(6):278-283.
[16]Kachoosangi, R.T., Musameh, M.M., Abu-Yousef, I., Yousef, J.M., Kanan, S.M., Xiao, L., Davies, S.G., Russell, A., Compton, R.G., 2009. Carbon nanotube-ionic liquid composite sensors and biosensors. Anal. Chem., 81(1):435-442.
[17]Li, H., Guarr, T.F., 1989. Formation of electrohically conductive thin films of metal phthalocyanines via electropolymerization. J. Chem. Soc. Chem. Commun., (13):832-834.
[18]Li, J., Lin, X., 2007. Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode. Sensors Actuat. B-Chem., 126(2):527-535.
[19]Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., et al., 1998. Fullerene pipes. Science, 280(5367):1253-1256.
[20]Malintan, N.T., Mohd, M.A., 2006. Determination of sulfonamides in selected Malaysian swine wastewater by high-performance liquid chromatography. J. Chromatogr. A, 1127(1-2):154-160.
[21]Maudens, K.E., Zhang, G.F., Lambert, W.E., 2004. Quantitative analysis of twelve sulfonamides in honey after acidic hydrolysis by high-performance liquid chromatography with post-column derivatization and fluorescence detection. J. Chromatogr. A, 1047(1):85-92.
[22]Msagati, T.A.M., Ngila, J.C., 2002. Voltammetric detection of sulfonamides at a poly(3-mehtylthiophene) electrode. Talanta, 58(3):605-610.
[23]Pang, G.F., Cao, Y.Z., Fan, C.L., Zhang, J.J., Li, X.M., Li, Z.Y., Jia, G.Q., 2003. Liquid chromatography-fluorescence detection for simultaneous analysis of sulfonamide residues in honey. Anal. Bioanal. Chem., 376(4):534-541.
[24]Pingarron Carrazon, J.M., Corona Corona, P., Polo Diez, L.M., 1987. Electroanalytical study of sulphadiazine at solid electrodes. Determination in pharmaceutical preparations. Electrochim. Acta, 32(11):1573-1575.
[25]Preechaworapun, A., Chuanuwatanakul, S., Einaga, Y., Grudpan, K., Motomizu, S., Chailapakul, O., 2006. Electroanalysis of sulfonamides by flow injection system/ high-performance liquid chromatography coupled with amperometric detection using boron-doped diamond electrode. Talanta, 68(5):1726-1731.
[26]Rao, T.N., Sarada, B.V., Tryk, D.A., Fujishima, A., 2000. Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection. J. Electroanal. Chem., 491(1-2):175-181.
[27]Shaidarova, L.G., Gedmina, A.V., Chelnokova, I.A., Budnikov, G.K., 2004. Electrocatalytic oxidation of hydroquinone and pyrocatechol at an electrode modified with a polyvinyl pyridine film with electrodeposited rhodium and its use in the analysis of pharmaceuticals. J. Anal. Chem., 59(11):1025-1031.
[28]Shaidarova, L.G., Gedmina, A.V., Chelnokova, I.A., Budnikov, G.K., 2006. Electrocatalytic oxidation and flow-injection determination of ascorbic acid at a graphite electrode modified with a polyaniline film containing electrodeposited palladium. J. Anal. Chem., 61(6):601-608.
[29]Shaidarova, L.G., Gedmina, A.V., Chelnokova, I.A., Budnikov, G.K., 2008. Determination of tetracycline antibiotics using the electrocatalytic response of an electrode modified by a mixed-valence ruthenium oxide-ruthenium cyanide film. Pharm. Chem. J., 42(9):545-549.
[30]Shaidarova, L.G., Gedmina, A.V., Chelnokova, I.A., Budnikov, G.K., 2011. Selective determination of paracetamol and acetylsalicylic acid on electrode modified with a mixed-valent film of ruthenium oxide-ruthenium cyanide. Russ. J. Appl. Chem., 84(4):620-627.
[31]Shelver, W.L., Shappell, N.W., Franek, M., Rubio, F.R., 2008. ELISA for sulfonamides and its application for screening in water contamination. J. Agric. Food Chem., 56(15):6609-6615.
[32]Souza, C.D., Braga, O.C., Vieira, I.C., Spinelli, A., 2008. Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sensors Actuat. B, 135(1):66-73.
[33]Tsai, Y.C., Chiu, C.C., 2007. Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sensor Actuat. B, 125(1):10-16.
[34]Tse, Y.H., Janda, P., Lam, H., 1995. Electrode with electropolymerized tetraaminophthalocyanatocobalt(II) for detection of sulfide ion. Anal. Chem., 67(5):981-985.
[35]Wang, J., Golden, T., Li, R., 1988. Cobalt phthalocyanine/ cellulose acetate chemically modified electrodes for electrochemical detection in flowing streams. Multifunctional operation based upon the coupling of electrocatalysis and permselectivity. Anal. Chem., 60(15):1642-1645.
[36]Xiao, Y., Guo, C., Li, C.M., Li, Y., Zhang, J., Xue, R., Zhang, S., 2007. Highly sensitive and selective method to detect dopamine in the presence of ascorbic acid by a new polymeric composite film. Anal. Biochem., 371(2):229-237.
[37]Zhang, Z., Liu, J.F., Shao, B., Jiang, G.B., 2010. Time-resolved fluoroimmunoassay as an advantageous approach for highly efficient determination of sulfonamides in environmental waters. Environ. Sci. Technol., 44(3):1030-1035.
[38]Zhou, X.H., Xi, F.N., Zhang, Y.M., Lin, X.F., 2011. Reagentless biosensor based on layer-by-layer assembly of functional multiwall carbon nanotubes and enzyme-mediator biocomposite. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 12(6):468-476.
Open peer comments: Debate/Discuss/Question/Opinion
<1>