CLC number: R395.1; R333.6
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-10-21
Cited: 21
Clicked: 7467
Fatemeh Rostamkhani, Homeira Zardooz, Saleh Zahediasl, Babak Farrokhi. Comparison of the effects of acute and chronic psychological stress on metabolic features in rats[J]. Journal of Zhejiang University Science B, 2012, 13(11): 904-912.
@article{title="Comparison of the effects of acute and chronic psychological stress on metabolic features in rats",
author="Fatemeh Rostamkhani, Homeira Zardooz, Saleh Zahediasl, Babak Farrokhi",
journal="Journal of Zhejiang University Science B",
volume="13",
number="11",
pages="904-912",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100383"
}
%0 Journal Article
%T Comparison of the effects of acute and chronic psychological stress on metabolic features in rats
%A Fatemeh Rostamkhani
%A Homeira Zardooz
%A Saleh Zahediasl
%A Babak Farrokhi
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 11
%P 904-912
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100383
TY - JOUR
T1 - Comparison of the effects of acute and chronic psychological stress on metabolic features in rats
A1 - Fatemeh Rostamkhani
A1 - Homeira Zardooz
A1 - Saleh Zahediasl
A1 - Babak Farrokhi
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 11
SP - 904
EP - 912
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100383
Abstract: This study was aimed to compare the effects of acute and chronic psychological stress on metabolic factors. Forty-two male Wistar rats were divided into control and stressed groups. Stress was applied by a communication box acutely (1 d) and chronically (15 and 30 d). Blood sampling was carried out by retro-orbital-puncture method. The plasma levels of glucose, cholesterol, triglyceride, insulin, and corticosterone were measured. In addition, feed and water intake, latency to eat and drink, adrenal and body weights were determined. Acute and chronic psychological stress did not significantly change basal plasma corticosterone levels. However, immediately (1 min) after acute exposure to stress, plasma corticosterone level increased compared to that before stress exposure. Acute stress increased plasma insulin levels significantly. Fifteen days of stress exposure resulted in plasma glucose increase. Chronic stress significantly increased feed intake, latency to eat, and adrenal weight compared to acute stress. The body weights of both control and stressed groups increased markedly during the experiment. Homeostasis model assessment of insulin resistance (HOMA-IR) index did not change significantly in the stressed group. In conclusion, application of acute and chronic psychological stress leads to different metabolic and/or behavioral changes but the metabolic changes resulting from acute exposure to stress seem to be more pronounced.
[1]Andrews, R.C., Walker, B.R., 1999. Glucocorticoids and insulin resistance: old hormones, new targets. Clin. Sci. (Lond.), 96(5):513-523.
[2]Armario, A., Castellanos, J.M., Balasch, J., 1984. Adaptation of anterior pituitary hormones to chronic noise stress in male rats. Behav. Neural Biol., 41(1):71-76.
[3]Armario, A., Castellanos, J.M., Balasch, J., 1985. Chronic noise stress and insulin secretion in male rat. Physiol. Behav., 34(3):359-361.
[4]Armario, A., Lopez-Calderon, A., Jolin, T., Balasch, J., 1986. Response of anterior pituitary hormones to chronic stress. The specificity of adaptation. Neurosci. Biobehav. Rev., 10(3):245-250.
[5]Bernatova, I., Key, M.P., Lucot, J.B., Morris, M., 2002. Circadian differences in stress-induced pressor reactivity in mice. Hypertension, 40(5):768-773.
[6]Bhatnagar, S., Vining, C., Iyer, V., Kinni, V., 2006. Changes in hypothalamic-pituitary-adrenal function, body temperature, body weight and food intake with repeated social stress exposure in rats. J. Neuroendocrinol., 18(1):13-24.
[7]Darmon, P., Dadoun, F., Boullu-Ciocca, S., Grino, M., Alessi, M.C., Dutour, A., 2006. Insulin resistance induced by hydrocortisone is increased in patients with abdominal obesity. Am. J. Physiol. Endocrinol. Metab., 291(5):995-1002.
[8]de Boer, S.F., van der Gugten, J., Slangen, J.L., 1989. Plasma catecholamine and corticosterone responses to predictable and unpredictable noise stress in rats. Physiol. Behav., 45(4):789-795.
[9]de Boer, S.F., Koopmans, S.J., Slangen, J.L., van der Gugten, J., 1990. Plasma catecholamine, corticosterone and glucose responses to repeated stress in rats: effect of inter stressor interval length. Physiol. Behav., 47(6):1117-1124.
[10]Depke, M., Fusch, G., Domanska, G., Geffers, R., Vӧlker, U., Christine Schuett, C., Kiank, C., 2008. Hypermetabolic syndrome as a consequence of repeated psychological stress in mice. Endocrinology, 149(6):2714-2723.
[11]Dhabhar, F.S., McEwen, B.S., 1997. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav. Immun., 11(4):286-306.
[12]Dong, J.J., Lou, N.J., Zhao, J.J., Zhang, Z.W., Qiu, L.L., Zhou, Y., Liao, L., 2011. Evaluation of a risk factor scoring model in screening for undiagnosed diabetes in China population. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 12(10):846-852.
[13]Dorfman, M., Ramirez, V.D., Stener-Victorin, E., Lara, H.E., 2009. Chronic-intermittent cold stress in rats induces selective ovarian insulin resistance. Biol. Reprod., 80(2):264-271.
[14]Endo, Y., Yamauchi, K., Fueta, Y., Lrie, M., 2001. Changes of body temperature and plasma corticosterone level in rats during psychological stress induced by the communication box. Med. Sci. Monitor, 7(6):1161-1165.
[15]Farahani, H., Ghasemi, A., Roghani, M., Zahediasl, S., 2010. The effect of maternal hypothyroidism on the carbohydrate metabolism and insulin secretion of isolated islets in adult male offspring of rats. Horm. Metab. Res., 42(11):792-797.
[16]Foster, M.T., Solomon, M.B., Huhman, K.L., Bartness, T.J., 2006. Socialdefeat increases food intake, body mass, and adiposity in Syrian hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol., 290(5):R1284-R1293.
[17]Fu, J.H., Xie, S.R., Kong, S.J., Wang, Y., Wei, W., Shan, Y., Luo, Y.M., 2009. The combination of a high-fat diet and chronic stress aggravates insulin resistance in Wistar male rats. Exp. Clin. Endocrinol. Diabetes, 117(7):354-360.
[18]Ghalami, J., Zardooz, H., Rostamkhani, F., Farrokhi, B., Hedayati, M., 2011. High-fat diet did not change metabolic response to acute stress in rats. EXCLI J., 10:205-217.
[19]Hershock, D., Vogel, W.H., 1989. The effects of immobilization stress on serum triglycerides, nonesterified fatty acids, and total cholesterol in male rats after dietary modifications. Life Sci., 45(2):157-165.
[20]Hoeflich, A., Weber, M.M., Fisch, T., Nedbal, S., Fottner, C., Elmlinger, M.W., Wanke, R., Wolf, E., 2002. Insulin-like growth factor binding protein 2 (IGFBP-2) separates hypertrophic and hyperplastic effects of growth hormone (GH)/IGF-I excess on adrenocortical cells in vivo. FASEB J., 16(13):1721-1731.
[21]Hoff, J., 2000. Methods of blood collection in the mouse. Lab. Animal, 29(10):47-53.
[22]Ishikawa, M., Hara, C., Ohdo, S., Ogawa, N., 1992. Plasma corticosterone response of rats with sociopsychological stress in the communication box. Physiol. Behav., 52(3):475-480.
[23]Jean Kant, G., Eggleston, T., Landman-Roberts, L., Kenion, C.C., Driver, G.C., Meyerhoff, J.L., 1985. Habituation to repeated stress is stressor specific. Pharmacol. Biochem. Behav., 22(4):631-634.
[24]Koo, J.W., Russo, S.J., Ferguson, D., Nestler, E.J., Duman, R.S., 2010. Nuclear factor-κB is a critical mediator of stress impaired neurogenesis and depressive behavior. PNAS, 107(6):2669-2674.
[25]Macht, M., 2008. How emotions affect eating: a five-way model. Appetite, 50(1):1-11.
[26]Macht, M., Krebs, H., Weyers, P., Janke, W., 2001. Effect of stress on feeding behavior in rats: individual differences. Pers. Indiv. Differ., 30(3):463-469.
[27]Makino, S., Asaba, K., Nishiyama, M., Hashimoto, K., 1999. Decreased type 2 corticotropin-releasing receptor mRNA expression in the ventromedial hypothalamus during repeated immobilization stress. Neuroendocrinology, 70(3):160-167.
[28]Martí, O., Gavaldà, A., Jolín, T., Armario, A., 1993. Effects of regulatory of exposure to chronic immobilization stress on the circadian pattern of pituitary adrenal hormones, growth hormone, and thyroid stimulating hormone in the adult male rat. Psychoneuroendocrinology, 18(1):67-77.
[29]Pitman, D.L., Ottenweller, J.E., Natelson, B.H., 1990. Effect of stressor intensity on habituation and sensitization of glucocorticoid responses in rats. Behav. Neurosci., 104(1):28-36.
[30]Rai, D., Bhatia, G., Sen, T., Palit, G., 2003. Comparative study of perturbations of peripheral markers in different stressors in rats. Can. J. Physiol. Pharmacol., 81(12):1139-1146.
[31]Ricart-Jane, D., Rodriguez-Sureda, V., Benavides, A., Peinado-Onsurbe, J., Lopez-Tejero, M.D., Liobera, M., 2002. Immobilization stress alters intermediate metabolism and circulating lipoproteins in the rat. Metabolism, 51(7):925-931.
[32]Robertson, R.P., Smith, P.H., 1976. Stress-induced inhibition of triglyceride secretion in vivo in sand rats. Metabolism, 25(12):1583-1590.
[33]Rosmond, R., 2005. Role of stress in the pathogenesis of the metabolic syndrome. Psychoneuroendocrinology, 30(1):1-10.
[34]Spencer, R.L., McEwen, B.S., 1990. Adaptation of the hypothalamic-pituitary-adrenal axis to chronic ethanol stress. Neuroendocrinology, 52(5):481-489.
[35]Starzec, J.J., Berger, D.F., Mason, E.B., Devito, W., Corso, C., 1981. The effects of differential psychological stress and infantile handling on plasma triglyceride and aortic cholesterol levels in rats. Psychosom. Med., 43(6):509-518.
[36]Tabarin, A., Diz-Chaves, Y., Consoli, D., Monsaingeon, M., Bale, T.L., Culler, M.D., Datta, R., Drago, F., Vale, W.W., Koob, G.F., et al., 2007. Role of the corticotropin-releasing factor receptor type 2 in the control of food intake in mice: a meal pattern analysis. Eur. J. Neurosci., 26(8):2303-2314.
[37]Teague, C.R., Dhabhar, F.S., Barton, R.H., Beckwith-Hall, B., Powell, J., Cobain, M., Singer, B., McEwen, B.S., Lindon, J.C., Nicholson, J.K., et al., 2007. Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague-Dawley rats. J. Proteome Res., 6(6):2080-2093.
[38]Thiagarajan, A.B., Gleiter, C.H., Mefford, I.N., Eskay, R.L., Nutt, D.J., 1989. Effect of single and repeated electroconvulsive shock on the hypothalamic-pituitary-adrenal axis and plasma catecholamines in rats. Psychopharmacology (Berl.), 97(4):548-552.
[39]Toleikis, P.M., Godin, D.V., 1995. Alteration of antioxidant status in diabetic rats by chronic exposure to restraint stressors. Pharmacol. Biochem. Behav., 52(2):355-366.
[40]van de Kar, L.D., Blair, M.L., 1999. Forebrain pathways mediating stress induced hormone secretion. Front. Neuroendocrinol., 20(1):1-48.
[41]Vidal, J., Buwalda, B., Koolhaas, J.M., 2011. Differential long-term effects of social stress during adolescence on anxiety in Wistar and wild-type rats. Behav. Process., 87(2):176-182.
[42]Yamada, F., Inoue, S., Saitoh, T., Tanaka, K., Satoh, S., Takamura, Y., 1993. Glucoregulatory hormones in the immobilization stress induced increase of plasma glucose in fasted and fed rats. Endocrinology, 132(5):2199-2205.
[43]Zelena, D., Mergl, Z., Foldes, A., Kovács, K.J., Tóth, Z., Makara, G.B., 2003. Role of hypothalamic inputs in maintaining pituitary-adrenal responsiveness in repeated restraint. Am. J. Physiol. Endocrinol. Metab., 285(5):E1110-E1117.
Open peer comments: Debate/Discuss/Question/Opinion
<1>