Full Text:   <2273>

Summary:  <1874>

CLC number: R589.2

On-line Access: 2016-06-03

Received: 2016-02-19

Revision Accepted: 2016-04-28

Crosschecked: 2016-05-12

Cited: 4

Clicked: 4890

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei Chen

http://orcid.org/0000-0002-2373-2437

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.6 P.437-446

http://doi.org/10.1631/jzus.B1600074


Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice


Author(s):  Hong-ming Su, Li-na Feng, Xiao-dong Zheng, Wei Chen

Affiliation(s):  Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   zjuchenwei@zju.edu.cn

Key Words:  Myricetin, Obesity, Adipogenesis, Oxidative stress


Hong-ming Su, Li-na Feng, Xiao-dong Zheng, Wei Chen. Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice[J]. Journal of Zhejiang University Science B, 2016, 17(6): 437-446.

@article{title="Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice",
author="Hong-ming Su, Li-na Feng, Xiao-dong Zheng, Wei Chen",
journal="Journal of Zhejiang University Science B",
volume="17",
number="6",
pages="437-446",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600074"
}

%0 Journal Article
%T Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice
%A Hong-ming Su
%A Li-na Feng
%A Xiao-dong Zheng
%A Wei Chen
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 6
%P 437-446
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600074

TY - JOUR
T1 - Myricetin protects against diet-induced obesity and ameliorates oxidative stress in C57BL/6 mice
A1 - Hong-ming Su
A1 - Li-na Feng
A1 - Xiao-dong Zheng
A1 - Wei Chen
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 6
SP - 437
EP - 446
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600074


Abstract: 
Background: myricetin is a naturally occurring antioxidant commonly found in various plants. However, little information is available with respect to its direct anti-obesity effects. Objective: This study was undertaken to investigate the effect of myricetin on high-fat diet (HFD)-induced obesity in C57BL/6 mice. Results: Administration of myricetin dramatically reduced the body weight of diet-induced obese mice compared with solely HFD-induced mice. Several parameters related to obesity including serum glucose, triglyceride, and cholesterol were significantly decreased in myricetin-treated mice. Moreover, obesity-associated oxidative stress (glutathione peroxidase (GPX) activity, total antioxidant capacity (T-AOC), and malondialdehyde (MDA)) and inflammation (tumor necrosis factor-α (TNF-α)) were ameliorated in myricetin-treated mice. Further investigation revealed that the protective effect of myricetin against HFD-induced obesity in mice appeared to be partially mediated through the down-regulation of mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and lipogenic transcription factor sterol regulatory element-binding protein 1c (SREBP-1c). Conclusions: Consumption of myricetin may help to prevent obesity and obesity-related metabolic complications.

杨梅素对膳食诱导的C57BL/6小鼠肥胖及氧化应激的干预作用

目的:研究杨梅素(myricetin)对高脂膳食(HFD)诱导的C57BL/6小鼠肥胖的干预作用,并探讨其作用机理。
创新点:首次在高脂膳食诱导的C57BL/6肥胖小鼠模型中证明杨梅素可明显减轻肥胖小鼠的体重,同时改善伴随肥胖的氧化应激和炎症。分子机理研究表明杨梅素通过下调脂代谢相关的转录因子(PPARγC/EBPαSREBP-1c)mRNA的表达,从而发挥减肥功效。
方法:将C57BL/6小鼠分为正常膳食组(ND,n=12)和高脂膳食组(HFD,n=24),分别给予正常膳食和高脂膳食喂食2周。之后,高脂膳食组分为高脂膳食组(n=12)和杨梅素保护组(HFD+M,灌胃150 mg/(kg·d)的杨梅素,n=12),继续处理10周。分析小鼠常规生理指标(体重和脏器重量)、生化指标(血糖浓度、甘油三酯和总胆固醇含量)、氧化应激指标(谷胱甘肽过氧化物酶(GPX)、超氧化物歧化酶(SOD)和总抗氧化能力(T-AOC))和炎症指标(肿瘤坏死因子α(TNF-α))等。苏木精-伊红染色法(H&E)和油红染色法分别观察脂肪组织和肝脏组织形态。实时逆转录聚合酶链反应(RT-PCR)分析小鼠脂肪组织PPARγC/EBPαSREBP-1c等基因的mRNA表达水平。
结论:与高脂膳食对照组相比,杨梅素处理可以显著减轻肥胖小鼠的体重。同时能显著降低肥胖小鼠血糖、甘油三酯和总胆固醇的含量。此外,杨梅素处理能缓解伴随肥胖的氧化应激(GPX活性、T-AOC和丙二醛(MDA))和炎症(TNF-α)。分子机理研究发现杨梅素通过下调脂肪细胞生成(PPARγC/EBPα)和脂质合成(SREBP-1c)密切相关的转录因子的mRNA表达。本研究结果将为杨梅素减肥产品的开发提供一定的理论依据。

关键词:杨梅素;肥胖;脂肪生成;氧化应激

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen, W., Li, Y., Li, J., et al., 2011. Myricetin affords protection against peroxynitrite-mediated DNA damage and hydroxyl radical formation. Food Chem. Toxicol., 49(9):2439-2444.

[2]Chen, W., Feng, L., Shen, Y., et al., 2013a. Myricitrin inhibits acrylamide-mediated cytotoxicity in human Caco-2 cells by preventing oxidative stress. Biomed. Res. Int., 2013:724183.

[3]Chen, W., Zhuang, J., Li, Y., et al., 2013b. Myricitrin protects against peroxynitrite-mediated DNA damage and cytotoxicity in astrocytes. Food Chem., 141(2):927-933.

[4]Chen, W., Zhou, S., Zheng, X., 2015. A new function of Chinese bayberry extract: protection against oxidative DNA damage. LWT-Food Sci. Technol., 60(2):1200-1205.

[5]Chen, Y.K., Cheung, C., Reuhl, K.R., et al., 2011. Effects of green tea polyphenol (−)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. J. Agric. Food Chem., 59(21):11862-11871.

[6]Choi, H.N., Kang, M.J., Lee, S.J., et al., 2014. Ameliorative effect of myricetin on insulin resistance in mice fed a high-fat, high-sucrose diet. Nutr. Res. Pract., 8(5):544-549.

[7]Colon-Gonzalez, F., Kim, G.W., Lin, J.E., et al., 2012. Obesity pharmacotherapy: what is next? Mol. Aspects Med., 34(1):71-83.

[8]Feldmann, M., Maini, R.N., 2001. Anti-TNFα therapy of rheumatoid arthritis: what have we learned? Annu. Rev. Immunol., 19(1):163-196.

[9]Frederich, R.C., Hamann, A., Anderson, S., et al., 1995. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med., 1(12):1311-1314.

[10]Furukawa, S., Fujita, T., Shimabukuro, M., et al., 2004. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 114(12):1752-1761.

[11]Galinier, A., Carriere, A., Fernandez, Y., et al., 2006. Adipose tissue proadipogenic redox changes in obesity. J. Biol. Chem., 281(18):12682-12687.

[12]Gregor, M.F., Hotamisligil, G.S., 2011. Inflammatory mechanisms in obesity. Annu. Rev. Immunol., 29(1):415-445.

[13]Grundy, S.M., 1998. Multifactorial causation of obesity: implications for prevention. Am. J. Clin. Nutr., 67(Suppl. 3):563S-572S.

[14]Harnly, J.M., Doherty, R.F., Beecher, G.R., et al., 2006. Flavonoid content of us fruits, vegetables, and nuts. J. Agric. Food Chem., 54(26):9966-9977.

[15]Hogan, S., Canning, C., Sun, S., et al., 2010. Effects of grape pomace antioxidant extract on oxidative stress and inflammation in diet induced obese mice. J. Agric. Food Chem., 58(21):11250-11256.

[16]Hotamisligil, G.S., Peraldi, P., Budavari, A., et al., 1996. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science, 271(5249):665-670.

[17]Hou, Y., Xue, P., Bai, Y., et al., 2012. Nuclear factor erythroid-derived factor 2-related factor 2 regulates transcription of CCAAT/enhancer-binding protein β during adipogenesis. Free Radic. Biol. Med., 52(2):462-472.

[18]Jeong, M.Y., Kim, H.L., Park, J., et al., 2014. Rubi Fructus (Rubus coreanus) activates the expression of thermogenic genes in vivo and in vitro. Int. J. Obes., 39(3):456-464.

[19]Joseph, S.B., Laffitte, B.A., Patel, P.H., et al., 2002. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem., 277(13):11019-11025.

[20]Keophiphath, M., Priem, F., Jacquemond-Collet, I., et al., 2009. 1,2-Vinyldithiin from garlic inhibits differentiation and inflammation of human preadipocytes. J. Nutr., 139(11):2055-2060.

[21]Kim, K.H., Park, Y., 2011. Food components with anti-obesity effect. Annu. Rev. Food Sci. Technol., 2(1):237-257.

[22]Kubota, N., Yano, W., Kubota, T., et al., 2007. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab., 6(1):55-68.

[23]Lei, K., Li, Y.L., Wang, Y., et al., 2015. Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(6):487-495.

[24]Li, J., Han, Q., Chen, W., et al., 2012. Antimicrobial activity of Chinese bayberry extract for the preservation of surimi. J. Sci. Food Agric., 92(11):2358-2365.

[25]Liu, I.M., Liou, S.S., Lan, T.W., et al., 2005. Myricetin as the active principle of abelmoschus moschatus to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med., 71(7):617-621.

[26]Liu, I.M., Tzeng, T.F., Liou, S.S., et al., 2007. Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a high-fructose diet in rats. Life Sci., 81(21):1479-1488.

[27]Lu, J., Papp, L.V., Fang, J., et al., 2006. Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity. Cancer Res., 66(8):4410-4418.

[28]Ng, M., Fleming, T., Robinson, M., et al., 2014. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet, 384(9945):766-781.

[29]Ong, K.C., Khoo, H.E., 1997. Biological effects of myricetin. Gen. Pharmacol. Vasc. Syst., 29(2):121-126.

[30]Ong, K.C., Khoo, H.E., 2000. Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci., 67(14):1695-1705.

[31]Song, Y., Park, H.J., Kang, S.N., et al., 2013. Blueberry peel extracts inhibit adipogenesis in 3T3-L1 cells and reduce high-fat diet-induced obesity. PLoS ONE, 8(7):e69925.

[32]Tilg, H., Moschen, A.R., 2006. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol., 6(10):772-783.

[33]Tweedie, D., Sambamurti, K., Greig, N.H., 2007. TNF-α inhibition as a treatment strategy for neurodegenerative disorders: new drug candidates and targets. Curr. Alzheimer Res., 4(4):378-385.

[34]Ueda, M., Ashida, H., 2012. Green tea prevents obesity by increasing expression of insulin-like growth factor binding protein-1 in adipose tissue of high-fat diet-fed mice. J. Agric. Food Chem., 60(36):8917-8923.

[35]Wong, D., Sullivan, K., Heap, G., 2012. The pharmaceutical market for obesity therapies. Nat. Rev. Drug Discov., 11(9):669-670.

[36]Wood, I.S., de Heredia, F.P., Wang, B., et al., 2009. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc. Nutr. Soc., 68(4):370-377.

[37]Wu, T., Tang, Q., Gao, Z., et al., 2013a. Blueberry and mulberry juice prevent obesity development in C57BL/6 mice. PLoS ONE, 8(10):e77585.

[38]Wu, T., Qi, X., Liu, Y., et al., 2013b. Dietary supplementation with purified mulberry (Morus australis Poir) anthocyanins suppresses body weight gain in high-fat diet fed C57BL/6 mice. Food Chem., 141(1):482-487.

[39]Wu, T., Yu, Z., Tang, Q., et al., 2013c. Honeysuckle anthocyanin supplementation prevents diet-induced obesity in C57BL/6 mice. Food Funct., 4(11):1654-1661.

[40]Wu, T., Tang, Q., Yu, Z., et al., 2014. Inhibitory effects of sweet cherry anthocyanins on the obesity development in C57BL/6 mice. Int. J. Food Sci. Nutr., 65(3):351-359.

[41]Xu, H., Uysal, K.T., Becherer, J.D., et al., 2002. Altered tumor necrosis factor-α (TNF-α) processing in adipocytes and increased expression of transmembrane TNF-α in obesity. Diabetes, 51(6):1876-1883.

[42]Yen, G.C., Chen, Y.C., Chang, W.T., et al., 2011. Effects of polyphenolic compounds on tumor necrosis factor-α (TNF-α)-induced changes of adipokines and oxidative stress in 3T3-L1 adipocytes. J. Agric. Food Chem., 59(2):546-551.

[43]Yu, Z.P., Xu, D.D., Lu, L.F., et al., 2016. Immunomodulatory effect of a formula developed from American ginseng and Chinese jujube extracts in mice. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 17(2):147-157.

[44]Yun, J.W., 2010. Possible anti-obesity therapeutics from nature—a review. Phytochemistry, 71(14-15):1625-1641.

[45]Zhao, Y., Sedighi, R., Wang, P., et al., 2015. Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice. J. Agric. Food Chem., 63(19):4843-4852.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE