CLC number: TB13; R318.52
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-02-11
Cited: 4
Clicked: 6183
Shao-zhi Zhang, Xiao-yi Yu, Guang-ming Chen. Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures[J]. Journal of Zhejiang University Science B, 2012, 13(3): 213-220.
@article{title="Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures",
author="Shao-zhi Zhang, Xiao-yi Yu, Guang-ming Chen",
journal="Journal of Zhejiang University Science B",
volume="13",
number="3",
pages="213-220",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B11a0041"
}
%0 Journal Article
%T Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures
%A Shao-zhi Zhang
%A Xiao-yi Yu
%A Guang-ming Chen
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 3
%P 213-220
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B11a0041
TY - JOUR
T1 - Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures
A1 - Shao-zhi Zhang
A1 - Xiao-yi Yu
A1 - Guang-ming Chen
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 3
SP - 213
EP - 220
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B11a0041
Abstract: Osteochondral allografting has been proved to be a useful method to treat diseased or damaged areas of joint surfaces. Operational long-term stocks of grafts which supply a buffer between procurement and utilization would contribute to the commercialization or industrialization of this technology. vitrification has been thought to be a promising method for successful preservation of articular cartilage (AC), but high concentration cryoprotectants (CPAs) are used which may cause high cellular toxicity. An effective way to reduce CPA toxicity is to increase CPA concentration gradually while the temperature is lowered. Understanding the mechanism of CPA permeation at subzero temperatures is important for designing the cryopreservation protocol. In this research, the permeation of dimethyl sulfoxide (Me2SO) in ovine AC at subzero temperatures was studied experimentally. Pretreated AC discs were exposed in Me2SO solutions for different time (0, 5, 15, 30, 50, 80, and 120 min) at three temperature levels (−10, −20, and −30 °C). The Me2SO concentration within the tissue was determined by ultraviolet (UV) spectrophotometry. The diffusion coefficients were estimated to be 0.85×10−6, 0.48×10−6, and 0.27×10−6 cm2/s at −10, −20, and −30 °C, respectively, and the corresponding activation energy was 29.23 kJ/mol. Numerical simulation was performed to compare two Me2SO addition protocols, and the results demonstrated that the total loading duration could be effectively reduced with the knowledge of permeation kinetics.
[1]Aubin, P.P., Cheah, H.K., Davis, A.M., Gross, A.E., 2001. Long-term followup of fresh femoral osteochondral allografts for posttraumatic knee defects. Clin. Orthop. Relat. R, 391(Suppl.):318-327.
[2]Brockbank, K.G.M., Chen, Z.Z., Song, Y.C., 2010. Vitrification of porcine articular cartilage. Cryobiology, 60(2):217-221.
[3]Carpenter, J.F., Dawson, P.E., 1991. Quantitation of dimethyl sulfoxide in solutions and tissues by high performance liquid chromatography. Cryobiology, 28(3):210-215.
[4]Carsi, B., Lopez-Lacomba, J.L., Sanz, J., Marco, F., Lopez-Duran, L., 2004. Cryoprotectant permeation through human articular cartilage. Osteoarthr. Cartilage, 12(10):787-792.
[5]Chen, H.H., Zhou, X.M., Shu, Z.Q., Woods, E.J., Gao, D.Y., 2009. Electrical conductivity measurements for the ternary systems of glycerol/ sodium chloride/water and ethylene glycol/sodium chloride/water and their applications in cryopreservation. Biopreserv. Biobank., 7(1):13-17.
[6]Chu, C.R., Convery, F.R., Akeson, W.H., Meyers, M., Amiel, D., 1999. Articular cartilage transplantation—clinical results in the knee. Clin. Orthop. Relat. R, 360:159-168.
[7]Elford, B.C., 1970. Diffusion and distribution of dimethyl sulphoxide in the isolated guinea-pig taenia coli. J. Physiol., 209(1):187-208.
[8]Elmoazzen, H.Y., Elliott, J.A.W., McGann, L.E., 2005. Cryoprotectant equilibration in tissues. Cryobiology, 51(1):85-91.
[9]Elmoazzen, H.Y., Poovadan, A., Law, G.K., Elliott, J.A.W., McGann, L.E., Jomha, N.M., 2007. Dimethyl sulfoxide toxicity kinetics in intact articular cartilage. Cell Tissue Bank., 8(2):125-133.
[10]Glenn, R.E., McCarty, E.C.Jr., Potter, H.G., Juliao, S.F., Gordon, J.F., Spindler, K.P., 2006. Comparison of fresh osteochondral autografts and allografts: a canine model. Am. J. Sports Med., 34(7):1084-1093.
[11]Hu, J.F., Wolfinbarger, L.Jr., 1994. Dimethyl sulfoxide concentration in fresh and cryopreserved porcine valved conduit tissues. Cryobiology, 31(5):461-467.
[12]Hua, T.C., Ren, H.S., 1994. Cryobiomedical Technologies. Science Press, Beijing, China, p.120 (in Chinese).
[13]Jomha, N.M., McGann, L.E., Elmoazzen, H.Y., 2008. Modeling cryoprotectant toxicity in articular cartilage. J. Bone Joint Surg. Br., 90B(Suppl.):105.
[14]Jomha, N.M., Law, G.K., Abazari, A., Rekieh, K., Elliott, J.A. W., McGann, L.E., 2009. Permeation of several cryoprotectant agents into porcine articular cartilage. Cryobiology, 58(1):110-114.
[15]Mukherjee, I.N., Li, Y., Song, Y.C., Long, R.C.Jr., Sambanis, A., 2008. Cryoprotectant transport through articular cartilage for long-term storage: experimental and modeling studies. Osteoarthr. Cartilage, 16(11):1379-1386.
[16]Muldrew, K., Sykes, B., Schachar, N., McGann, L.E., 1996. Permeation kinetics of dimethyl sulfoxide in articular cartilage. Cryoletters, 17:331-340.
[17]Pegg, D.E., 1986. Equations for obtaining melting points and eutectic temperatures for the ternary system dimethyl sulphoxide/sodium chloride/water. Cryoletters, 7:387-394.
[18]Pegg, D.E., 2006. Immersion weighing as a method for monitoring the permeation of tissues by cryoprotectants. Cryobiology, 53(3):383.
[19]Pegg, D.E., Hunt, C.J., Fong, L.P., 1987. Osmotic properties of the rabbit corneal endothelium and their relevance to cryopreservation. Cell Biochem. Biophys., 10(2):169-189.
[20]Pegg, D.E., Wusteman, M.C., Wang, L.H., 2006a. Cryopreservation of articular cartilage. Part 1: conventional cryopreservation methods. Cryobiology, 52(3):335-346.
[21]Pegg, D.E., Wang, L.H., Vaughan, D., Hunt, C.J., 2006b. Cryopreservation of articular cartilage. Part 2: mechanisms of cryoinjury. Cryobiology, 52(3):347-359.
[22]Pegg, D.E., Wang, L.H., Vaughan, D., 2006c. Cryopreservation of articular cartilage. Part 3: the liquidus-tracking method. Cryobiology, 52(3):360-368.
[23]Raikin, S.M., 2009. Fresh osteochondral allografts for large-volume cystic osteochondral defects of the talus. J. Bone Joint Surg. Am., 91(12):2818-2826.
[24]Rall, W.F., Fahy, G.M., 1985. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature, 313(6003):573-575.
[25]Sharma, R., Law, G.K., Rehieh, K., Abazari, A., Elliott, J.A. W., McGann, L.E., Jomha, N.M., 2007. A novel method to measure cryoprotectant permeation into intact articular cartilage. Cryobiology, 54(2):196-203.
[26]Song, Y.C., Khirabadi, B.S., Lightfoot, F., Brockbank, K.G. M., Taylor, M.J., 2000. Vitreous cryopreservation maintains the function of vascular grafts. Nat. Biotechnol., 18(3):296-299.
[27]Song, Y.C., An, Y.H., Kang, Q.K., Li, C.Y., Boggs, J.M., Chen, Z.Z., Taylor, M.J., Brockbank, K.G.M., 2004a. Vitreous preservation of articular cartilage grafts. J. Invest. Surg., 17(2):65-70.
[28]Song, Y.C., Lightfoot, F.G., Chen, Z.Z., Taylor, M.J., Brockbank, K.G.M., 2004b. Vitreous preservation of rabbit articular cartilage. Cell Preserv. Technol., 2(1):67-74.
[29]Tomford, W.W., Fredericks, G.R., Mankin, H.J., 1984. Studies on cryopreservation of articular cartilage chondrocytes. J. Bone Joint Surg. Am., 66(2):253-259.
[30]Wang, L.H., Pegg, D.E., Lorrison, J., Vaughan, D., Rooney, P., 2007. Further work on the cryopreservation of articular cartilage with particular reference to the liquidus tracking (LT) method. Cryobiology, 55(2):138-147.
[31]Williams, S.K., Amiel, D., Ball, S.T., Allen, R.T., Tontz, W.L., Emmerson, B.C.Jr., Badlani, N.M., Emery, S.C., Haghighi, P., Bugbee, W.D., 2007. Analysis of cartilage tissue on a cellular level in fresh osteochondral allograft retrievals. Am. J. Sports Med., 35(12):2022-2032.
[32]Wusteman, M.C., Pegg, D.E., Robinson, M.P., Wang, L.H., Fitch, P., 2002. Vitrification media: toxicity, permeability, and dielectric properties. Cryobiology, 44(1):24-37.
[33]Wusteman, M.C., Simmonds, J., Vaughan, D., Pegg, D.E., 2008. Vitrification of rabbit tissues with propylene glycol and trehalose. Cryobiology, 56(1):62-71.
[34]Xia, Y., Farquhar, T., Burton-Wurster, N., Ray, E., Jelinski, L.W., 1994. Diffusion and relaxation mapping of cartilage-bone plugs and excised disks using microscopic magnetic resonance imaging. Magn. Reson. Med., 31(3):273-282.
[35]Xu, H., Shi, H.C., Zang, W.F., Lu, D., 2009. An experimental research on cryopreserving rabbit trachea by vitrification. Cryobiology, 58(2):225-231.
[36]Yu, X.Y., Zhang, S.Z., Xu, M.J., Chen, G.M., 2010. Study on the permeation of dimethyl sulfoxide into articular cartilage. J. Eng. Thermophys., 31(8):1363-1366 (in Chinese).
[37]Zhang, S.Z., Pegg, D.E., 2007. Analysis of the permeation of cryoprotectants in cartilage. Cryobiology, 54(2):146-153.
Open peer comments: Debate/Discuss/Question/Opinion
<1>