CLC number: Q319+.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-11-12
Cited: 1
Clicked: 5211
Anna Pick Kiong Ling, Ying Chian Ung, Sobri Hussein, Abdul Rahim Harun, Atsushi Tanaka, Hase Yoshihiro. Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation[J]. Journal of Zhejiang University Science B, 2013, 14(12): 1132-1143.
@article{title="Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation",
author="Anna Pick Kiong Ling, Ying Chian Ung, Sobri Hussein, Abdul Rahim Harun, Atsushi Tanaka, Hase Yoshihiro",
journal="Journal of Zhejiang University Science B",
volume="14",
number="12",
pages="1132-1143",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200126"
}
%0 Journal Article
%T Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation
%A Anna Pick Kiong Ling
%A Ying Chian Ung
%A Sobri Hussein
%A Abdul Rahim Harun
%A Atsushi Tanaka
%A Hase Yoshihiro
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 12
%P 1132-1143
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200126
TY - JOUR
T1 - Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation
A1 - Anna Pick Kiong Ling
A1 - Ying Chian Ung
A1 - Sobri Hussein
A1 - Abdul Rahim Harun
A1 - Atsushi Tanaka
A1 - Hase Yoshihiro
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 12
SP - 1132
EP - 1143
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200126
Abstract: Objective: Heavy ion beam, which has emerged as a new mutagen in the mutation breeding of crops and ornamental plants, is expected to result in the induction of novel mutations. This study investigates the morphological and biochemical responses of Oryza sativa toward different doses of carbon ion beam irradiation. Methods: In this study, the dry seeds of O. sativa were irradiated at 0, 20, 40, 60, 80, 100, and 120 Gy, followed by in-vitro germination under controlled conditions. Morphological and biochemical studies were conducted to investigate the morphological and physiological responses of O. sativa towards ion beam irradiation. Results: The study demonstrated that low doses (10 Gy) of ion beam have a stimulating effect on the height, root length, and fresh weight of the plantlets but not on the number of leaves. Meanwhile, doses higher than 10 Gy caused reductions in all the morphological parameters studied as compared to the control samples. The highest total soluble protein content [(2.11±0.47) mg/g FW] was observed in plantlets irradiated at 20 Gy. All irradiated plantlets were found to have 0.85% to 58.32% higher specific activity of peroxidase as compared to the control samples. The present study also revealed that low doses of ion beam (10 and 20 Gy) had negligible effect on the total chlorophyll content of O. sativa plantlets while 40 Gy had a stimulating effect on the chlorophyll content. Plantlets irradiated between 40 to 120 Gy were shown to be 0.38% to 9.98% higher in total soluble nitrogen content which, however, was not significantly different from the control samples. Conclusions: Carbon ion beam irradiation administered at low to moderate doses of 10 to 40 Gy may induce O. sativa mutants with superior characteristics.
[1]Abe, T., Matsuyama, T., Sekido, S., Yamaguchi, I., Yoshida, S., Kameya, T., 2002. Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation. J. Radiat. Res., 43:S157-S161.
[2]Ahmad, Z., Abu Hassan, A., Idris, N.A., Basiran, N.M., Tanaka, A., Shikazono, N., Oono, Y., Hase, N., 2006. Effects of ion beam irradiation on Oncidium lanceanum Orchids. J. Nucl. Relat. Technol., 3(1):1-8.
[3]Bae, C.H., Abe, T., Matsuyama, T., Fukunishi, N., Nagata, N., Nakano, T., Kaneko, Y., Miyoshi, K., Matsushima, H., Yoshida, S., 2001. Regulation of chloroplast gene expression is affected in ali, a novel tobacco albino mutant. Ann. Bot., 88(4):545-553.
[4]Bajaj, Y.P.S., 1970. Effect of gamma-irradiation on growth, RNA, protein and nitrogen contents of bean callus cultures. Ann. Bot., 34(5):1089-1096.
[5]Balooch, A.W., Soomro, A.M., Naqvi, M.H., Bughio, H.R., Bughio, M.S., 2006. Sustainable enhancement of rice (Oryza sativa L.) production through the use of mutation breeding. Plant Mutat. Rep., 1(1):40-42.
[6]Bradford, M., 1976. A rapid and sensitive method for the quantification of the microgram quantities of proteins utilizing the principle of protein dye binding. Anal. Biochem., 72(1-2):248-254.
[7]Byun, M.W., Jo, C., Lee, K.Y., Kim, K.S., 2002. Chlorophyll breakdown by gamma irradiation in a model system containing linoleic acid. J. Am. Oil Chem. Soc., 79(2):145-150.
[8]Chia, J.Y., 2008. Effects of Gamma-Irradiation on Morphological and Physiological Changes in Citrus sinensis. BSc Thesis, Universiti Tunku Abdul Rahman, Malaysia.
[9]Cho, H.Y., Lee, H.S., Pai, H.S., 2000. Expression pattern of diverse genes in response to gamma irradiation in Nicotiana tabacum. J. Plant Biol., 43(2):82-87.
[10]Corthals, G., Gygi, S., Aebersold, R., Patterson, S.D., 2000. Identification of proteins by mass spectrometry. Proteome Res., 2(1):286-290.
[11]Creanga, D., Mantale, A.M., Ecaterina, F., 2005. The Radiosensitivity of Photosynthetic Processes in Young Maize Plants. Available from http://www.phys.uaic.ro/labs/comb/analele%20stintifice/2005/16_CREANGA_THERADIOSENSITIVITY.pdf [Accessed on Jan. 29, 2010]
[12]Croci, C.A., Arguello, J.A., Curvetto, N.R., Orioli, G.A., 1991. Changes in peroxidases associated with radiation-induced sprout inhibition in garlic (Allium sativum L.). Int. J. Radiat. Biol., 59(2):551-557.
[13]Doerge, D.R., Divi, R.L., Churchwell, M.I., 1997. Identification of the colored guaicol oxidation product produced by peroxidases. Anal. Biochem., 250(1):10-17.
[14]Dong, X.C., Li, W.J., Liu, Q.F., He, J.Y., Yu, L.X., Zhou, L.B., Qu, Y., Xie, H.M., 2008. The influence of carbon ion irradiation on sweet sorghum seeds. Nucl. Instrum. Methods Phys. Res. B, 266(1):123-126.
[15]Fu, H.W., Li, Y.F., Shu, Q.Y., 2008. A revisit of mutation induction by gamma rays in rice (Oryza sativa L.): implications of microsatellite markers for quality control. Mol. Breed., 22(2):281-288.
[16]Gaber, M.H., 2005. Effect of γ-irradiation on the molecular properties of bovine serum albumin. J. Biosci. Bioeng., 100(2):203-206.
[17]Gaikwad, J., Thomas, S., Kamble, S., Vidyasagar, P.B., Sarma, A., 1999. Effect of 7Li (45 MeV) ions on spinach leaves studied by thermoluminescence technique. Nucl. Instrum. Methods Phys. Res. B, 156(1-4):231-235.
[18]Gordon, S.A., Weber, R.P., 1953. Enzymatic radiosensitivity of auxinbiosynthesis. Radiat. Res., 21(1):23-31.
[19]Hameed, A., Mahmud Shah, T., Atta, B.M., Haq, M.A., Sayed, H., 2008. Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in Desi and Kabuli chickpea. Pak. J. Bot., 40(3):1033-1041.
[20]Hayashi, Y., Takehisa, H., Kazama, Y., Ichida, H., Ryuto, H., Fukunishi, N., Abe, T., 2007. Effects of ion beam irradiation on mutation induction in rice. Cyclotr. Their Appl., 18:237-239.
[21]Hayden, G.A., Friedberg, F., 1964. Effects of gamma radiation on ribonuclease. Radiat. Res., 22(1):130-135.
[22]Hewawasam, W.D.C.J., Bandara, D.C., Aberathne, W.M., 2004. New phenotypes of Crossandra infundibuliformis through in vitro culture and induced mutations. Trop. Agric. Res., 16(1):253-270.
[23]Humera, A., 2006. Biochemical and Molecular Markers of Somaclonal Variants and Induced Mutants of Potato (Solanum tuberosum L.). PhD Thesis, University of Punjab Lahore, Pakistan.
[24]International Rice Research Institute, 1985. Evaluation of the Physical Environment for Rice Cultivation. In: Soil Physics and Rice. International Rice Research Institute, Manila, p.32-36.
[25]Iqbal, J., Kutaček, M., Jiraček, V., 1974. Effects of acute gamma irradiation on the concentration of amino acids and protein-nitrogen in Zea mays. Radiat. Bot., 14(3):165-172.
[26]Jones, H.E., West, H.M., Chamberlain, P.M., Parekh, N.R., Beresford, N.A., Crout, N.M.J., 2004. Effects of gamma irradiation on Holcus lanatus (Yorkshire fog grass) and associated soil microorganisms. J. Environ. Radioact., 74(1-3):57-71.
[27]Kalimullah, M., Gaikwad, J.U., Thomas, S., Sarma, A., Vidyasagar, P.B., 2003. Assessment of 1H heavy ion irradiation induced effects in the development of rice (Oryza sativa L.) seedlings. Plant Sci., 165(3):447-454.
[28]Khanna, V.K., Maherchandani, N., 1985. Effects of gamma irradiation and seedling growth of “Kabuli” and “Desi” chickpea on the activity of alpha amylase. Indian J. Genet. Plant Breed., 28(2):3-10.
[29]Kim, J.H., Baek, M.H., Chung, B.Y., Wi, S.G., Kim, J.S., 2004. Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annum L.) seedlings from gamma-irradiated seeds. J. Plant Biol., 47(2):314-321.
[30]Kirova, E., Nedeva, D., Nikolova, A., Ignatov, G., 2005. Changes in the biomass production and total soluble protein spectra of nitrate-fed and nitrogen-fixing soybeans subjected to gradual water stress. Plant Soil Environ., 51(5):237-242.
[31]Kokkinakis, D.M., Brooks, J.L., 1979. Tomato peroxidase: purification, characterization and catalytic properties. Plant Physiol., 63(1):93-99.
[32]Li, K., Jiang, S., Yu, H.C., Zhao, J., Zhang, F.S., Carr, C., Zhang, J., Zhang, G., 2009. Analysis of charge and mass effects on peroxidase expressions and activities in Arabidopsis thaliana after low-energy ion irradiation. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 680(1-2):64-69.
[33]Lichtenthaler, H.K., 1987. Chlorophylls and carotenoids: pigments of the photosynthetic biomembranes. Methods Enzymol., 148(1):350-382.
[34]Ling, A.P.K., Chia, J.Y., Hussein, S., Harun, A.R., 2008. Physiological responses of Citrus sinensis to gamma irradiation. World Appl. Sci. J., 5(1):12-19.
[35]Maity, J.P., Chakraborty, S., Sandeep, K., Subrata, P., Jean, J., Samal, A.C., Chakraborty, A., Santra, S.C., 2009. Effects of gamma irradiation on edible seed protein, amino acids and genomic DNA during sterilization. Food Chem., 114(4):1237-1244.
[36]Maltseva, A.V., Kuzin, M.A., 1975. Effect of gamma irradiation on some physiological properties of histones in Vicia faba and Trifolium pratense. Radiobiology, 14:480-485.
[37]Masuda, M., Agong, S.G., Tanaka, A., Shikazono, N., Hase, Y., 2009. Mutation spectrum of tomato induced by seed radiation with carbon and helium ion beams. Acta Hort., 637:257-262.
[38]Matsumura, A., Nomizu, T., Furutani, N., Hayashi, K., Minamiyama, Y., Hase, Y., 2010. Ray florets color and shape mutants induced by 12C5+ ion beam irradiation in chrysanthemum. Sci. Hort., 123(4):558-561.
[39]Mohamad, O., Mohd Nazir, B., Alias, I., Azlan, S., Abdul Rahim, H., Abdullah, M.Z., Othman, O., 2006. Development of improved rice varieties through the use of induced mutations in Malaysia. Plant Mutat. Rep., 1(1):27-33.
[40]Moussa, H.R., 2006. Role of gamma irradiation in regulation of NO3 level in rocket (Eruca vesicaria subsp. sativa) plants. Russ. J. Plant Physiol., 53(2):193-197.
[41]Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant., 15(3):473-497.
[42]Nassar, A.H., Hashim, M.F., Hassan, N.S., Abo-Zaid, H., 2004. Effect of gamma irradiation and phosphorus on growth and oil production of Chamomile (Chamomilla recutita L. Rauschert). Int. J. Agric. Biol., 6(5):776-780.
[43]Omar, M.S., Yousif, D.P., Al-Jibouri, A.J.M., Al-Rawi, M.S., Hameed, M.K., 1993. Effects of gamma rays and sodium chloride on growth and cellular constituents of sunflower (Helianthus annuus L.) callus cultures. J. Islamic Acad. Sci., 6(1):69-72.
[44]Preuss, S.B., Britt, A.B., 2003. A DNA-damage-induced cell cycle checkpoint in Arabidopsis. Genetics, 164:323-334.
[45]Qureshi, M.I., Qadir, S., Zolla, L., 2007. Proteomics-based dissection of stress-responsive pathways in plants. J. Plant Physiol., 164(10):1239-1260.
[46]Rakwal, R., Kimura, S., Shibato, J., Nojima, K., Kim, Y.I., Nahm, B.H., 2007. Growth retardation and death of rice plants irradiated with carbon ion beams is preceded by very early dose- and time-dependent gene expression changes. Mol. Cells, 25(2):1-8.
[47]Rao, K.V.M., 2006. Introduction. In: Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, the Netherlands, p.1.
[48]Rennie, D.A., Nelson, S.H., 1975. Low dose irradiation of vegetable seeds: the effects on N and P uptake. Can. J. Plant Sci., 55(3):761-769.
[49]Saha, P., Raychaudhuri, S.S., Chakraborty, A., Sudarshan, M., 2010. PIXE analysis of trace elements in relation to chlorophyll concentration in Plantago ovata Forsk. Appl. Radiat. Isot., 68(3):444-449.
[50]Sharma, K.D., 1986. Induced Mutagenesis in Rice. In: Rice Genetics: Proceedings of the International Rice Genetics Symposium. International Rice Research Institute, Manila, p.680.
[51]Shikazono, N., Yokota, Y., Kitamura, S., Suzuki, C., Watanabe, H., Tano, S., Tanaka, A., 2003. Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics, 163:1449-1455.
[52]Singh, B.B., 1971. Effect of gamma-irradiation on chlorophyll content of maize leaves. Radiat. Bot., 11(3):243-244.
[53]Skoog, F., 1935. The effect of gamma irradiation on auxin and plant growth. Physiology, 7(2):227-270.
[54]Strid, A., Chow, W.S., Anderson, J.M., 1990. Effects of supplementary gamma irradiation on photosynthesis in Pisumsativum. Biochemistry, 1020(1):260-268.
[55]Suprasanna, P., Sidha, M., Bapat, V.A., 2009. Integrated Approaches of Mutagenesis and in vitro Selection for Crop Improvement. In: Plant Tissue Culture and Molecular Markers: Their Roles in Improving Crop Productivity. IK International Publishing House, India, p.73-91.
[56]Tanaka, A., Kobayashi, Y., Hase, Y., Watanabe, H., 2002. Positional effect of cell inactivation on root gravitropism using heavy-ion microbeams. J. Exp. Bot., 53(369):683-687.
[57]Vazquez-Tello, A., Uozumi, T., Hidaka, M., Kobayashi, Y., Wanatabe, H., 2005. Effect of 12C+5 ion beam irradiation on cell viability and plant regeneration in callus, protoplasts and cell suspensions of Lavatera thuringiaca. Plant Cell Rep., 16(1-2):46-49.
[58]Veitch, N.C., 2004. Structural determinants of plant peroxidase function. Phytochem. Rev., 3(1/2):3-18.
[59]Verma, S., Lakra, N., Sarma, A., Misha, S.N., 2009. Effect of Li+ Heavy Ion on Hydrogen Peroxide Decomposing Enzymes in Leaves of Brassica juncea. MS Thesis, Maharshi Dayanand University, Rothak.
[60]Wang, K., 2006. Indica Rice (Oryza sativa, BR29 and IR64). In: Agrobacterium Protocols. Volume 1, Humana Press Inc., New Jersey, p.201.
[61]Widholm, J.M., 1989. Mutant isolation techniques with plant tissue culture. J. Tissue Cult. Methods, 12(4):151-156.
[62]Yamaguchi, H., Hase, Y., Tanaka, A., Shikazono, N., Degi, K., Shimizu, A., Morishita, T., 2009. Mutagenic effects of ion beam irradiation on rice. Breed. Sci., 59(2):169-177.
[63]Zaka, R., Vandecasteele, C.M., Misset, M.T., 2002. Effects of low chronic doses of ionizing radiation on antioxidant enzymes and G6PDH activities in Stipa capillata. J. Exp. Bot., 53(376):1979-1987.
[64]Zhang, L., Zhang, H., Zhang, X., Zhu, J., 2008. Assessment of biological changes in wheat seedlings induced by 12C6+-ion irradiation. Nucl. Sci. Tech., 19(3):138-141.
[65]Zhou, L., Li, W., Yu, L., Li, P., Li, Q., Ma, S., Dong, X., Zhou, G., Leloup, C., 2006. Linear energy transfer dependence of the effects of carbon ion beams on adventitious shoot regeneration from in vitro leaf explants of Saintpaulia ionahta. Int. J. Radiat. Biol., 82(7):473-481.
Open peer comments: Debate/Discuss/Question/Opinion
<1>