CLC number: R651
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-10-21
Cited: 0
Clicked: 5246
D. Burcu Hazer, Ercan Bal, Glay Nurlu, Kemal Benli, Serdar Balci, Feral ztrk, Baki Hazer. In vivo application of poly-3-hydroxyoctanoate as peripheral nerve graft[J]. Journal of Zhejiang University Science B, 2013, 14(11): 993-1003.
@article{title="In vivo application of poly-3-hydroxyoctanoate as peripheral nerve graft",
author="D. Burcu Hazer, Ercan Bal, Glay Nurlu, Kemal Benli, Serdar Balci, Feral ztrk, Baki Hazer",
journal="Journal of Zhejiang University Science B",
volume="14",
number="11",
pages="993-1003",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300016"
}
%0 Journal Article
%T In vivo application of poly-3-hydroxyoctanoate as peripheral nerve graft
%A D. Burcu Hazer
%A Ercan Bal
%A Glay Nurlu
%A Kemal Benli
%A Serdar Balci
%A Feral ztrk
%A Baki Hazer
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 11
%P 993-1003
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300016
TY - JOUR
T1 - In vivo application of poly-3-hydroxyoctanoate as peripheral nerve graft
A1 - D. Burcu Hazer
A1 - Ercan Bal
A1 - Glay Nurlu
A1 - Kemal Benli
A1 - Serdar Balci
A1 - Feral ztrk
A1 - Baki Hazer
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 11
SP - 993
EP - 1003
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300016
Abstract: Objective: This study aims to investigate the degree of biocompatibility and neuroregeneration of a polymer tube, poly-3-hydroxyoctanoate (PHO) in nerve gap repair. Methods: Forty Wistar Albino male rats were randomized into two groups: autologous nerve gap repair group and PHO tube repair group. In each group, a 10-mm right sciatic nerve defect was created and reconstructed accordingly. neuroregeneration was studied by sciatic function index (SFI), electromyography, and immunohistochemical studies on Days 7, 21, 45 and 60 of implantation. Biocompatibility was analyzed by the capsule formation around the conduit. Biodegradation was analyzed by the molecular weight loss in vivo. Results: Electrophysiological and histomorphometric assessments demonstrated neuroregeneration in both groups over time. In the experimental group, a straight alignment of the Schwann cells parallel to the axons was detected. However, autologous nerve graft seems to have a superior neuroregeneration compared to PHO grafts. Minor biodegradation was observed in PHO conduit at the end of 60 d. Conclusions: Although neuroregeneration is detected in PHO grafts with minor degradation in 60 d, autologous nerve graft is found to be superior in axonal regeneration compared to PHO nerve tube grafts. PHO conduits were found to create minor inflammatory reaction in vivo, resulting in good soft tissue response.
[1]Aguilar Salegio, E.A., Pollard, A.N., Smith, M., Zhou, X.F., 2010. Sciatic nerve conditioning lesion increases macrophage response but it does not promote the regeneration of injured optic nerves. Brain Res., 1361:12-22.
[2]Bain, J.R., Mackinnon, S.E., Hunter, D.A., 1989. Functional evaluation of complete sciatic, peroneal and posterior tibial nerve lesions in the rat. Plast. Recons. Surg., 83(1):129-136.
[3]Bian, Y.Z., Wang, Y., Aibaidoula, G., Chen, G.Q., Wu, Q., 2009. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials, 30(2):217-225.
[4]Brunelli, G.A., Vigasio, A., Brunelli, G.R., 1994. Different conduits in peripheral nerve surgery. Microsurgery, 15(3):176-178.
[5]Chen, C.J., Ou, Y.C., Liao, S.L., Chen, W.Y., Chen, S.Y., Wu, C.W., Wang, C.C., Wang, W.Y., Huang, Y.S., Hsu, S.H., 2007. Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp. Neurol., 204(1):443-453.
[6]Chen, G.Q., Wu, Q., 2005. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26(33):6565-6578.
[7]Chen, M.H., Chen, P.R., Chen, M.H., Hsieh, S.T., Huang, J.S., Lin, F.H., 2006. An in vivo study of tricalcium phosphate and glutaraldehyde crosslinking gelatin conduits in peripheral nerve repair. J. Biomed. Mater. Res. B Appl. Biomater., 77B(1):89-97.
[8]Chung, M.G., Kim, H.W., Kim, B.R., Kim, Y.B., Rhee, Y.H., 2012. Biocompatibility and antimicrobial activity of poly(3-hydroxyoctanoate) grafted with vinylimidazole. Int. J. Biol. Macromol., 50(2):310-316.
[9]Dahlin, L.B., Anagnostaki, L., Lundborg, G., 2001. Tissue response to silicone tubes used to repair human median and ulnar nerves. Scand. J. Plast. Reconstr. Surg. Hand Surg., 35(1):29-34.
[10]di Summa, P.G., Kalbermatten, D.F., Pralong, E., Raffoul, W., Kinghamb, P.J., Terenghib, G., 2011. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience, 181:278-291.
[11]Fawcett, J.W., Keynes, R.J., 1990. Peripheral nerve regeneration. Ann. Rev. Neurosci., 13:43-60.
[12]Foster, L.J.R., Sanguanchaipaiwong, V., Gabelish, C.L., Hook, J., 2005. A natural-synthetic hybrid copolymer of polyhydroxyoctanoate-diethylene glycol: biosynthesis and properties. Polymer, 46(17):6587-6594.
[13]Han, C., Zhang, L., Sun, J., Shi, H., Zhou, J., Gao, C., 2010. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 11(7):524-530.
[14]Hazari, A., Johansson-Rudrn, G., Junemo-Bostrom, K., Ljungberg, C., Terenghi, G., Green, C., Wiberg, M., 1999. A new resorbable wrap-around implant as an alternative nerve repair technique. J. Hand Surg., 24B:291-295.
[15]Hazer, B., 2010. Amphiphilic poly(3-hydroxy alkanoate)s: potential candidates for medical applications. Int. J. Polym. Sci., 2010:423460.
[16]Hazer, B., Steinbuchel, A., 2007. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl. Microbiol. Biotechnol., 74(1):1-12.
[17]Hazer, B., Hazer, D.B., Çoban, B., 2009. Synthesis of microbial elastomers based on soybean oil. Autoxidation kinetics, thermal and mechanical properties. J. Polym. Res., 17(4):567-577.
[18]Hazer, D.B., Hazer, B., 2011. The effect of gold clusters on the autoxidation of poly(3-hydroxy 10-undecenoate-co-3-hydroxyl octanoate) and tissue response evaluation. J. Polym. Res., 18(2):251-262.
[19]Hazer, D.B., Hazer, B., Kaymaz, F., 2009. Synthesis of microbial elastomers based on soybean oily acids. Biocompatibility studies. Biomed. Mater., 4(3):035011.
[20]Hazer, D.B., Hazer, B., Dinçer, N., 2011. Soft tissue response to the presence of polypropylene-G-poly (ethylene glycol) comb-type graft copolymers containing gold nanoparticles. J. Biomed. Biotechnol., 2011:956169.
[21]Hazer, D.B., Mut, M., Dinçer, N., Saribas, Z., Hazer, B., Ozgen, T., 2012a. The efficacy of silver-embedded polypropylene-grafted polyethylene glycol-coated ventricular catheters on prevention of shunt catheter infection in rats. Child’s Nerv. Syst., 28(6):839-846.
[22]Hazer, D.B., Kılıçay, E., Hazer, B., 2012b. Poly(3-hydroxyalkanoate)s: diversification and biomedical applications: a state of the art review. Mater. Sci. Eng. C, 32(4):637-647.
[23]Huang, Y.C., Huang, Y.Y., 2006. Biomaterials and strategies for nerve regeneration. Artif. Organs, 30(7):514-522.
[24]Kakinoki, S., Uchida, S., Ehashi, T., Murakami, A., Yamaoka, T., 2011. Surface modification of poly(L-lactic acid) nanofiber with oligo(D-lactic acid) bioactive-peptide conjugates for peripheral nerve regeneration. Polymers, 3(4):820-832.
[25]Kim, D.Y., Kim, H.W., Chung, M.G., Rhee, Y.H., 2007. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J. Microbiol., 45(2):87-97.
[26]Kim, S.W., Bae, H.K., Nam, H.S., Chung, D.J., Choung, P.H., 2006. Peripheral nerve regeneration through nerve conduit composed of alginate-collagen-chitosan. Macromol. Res., 14(1):94-100.
[27]Lago, N., Rodríguez, F.J., Guzmán, M.S., Jaramillo, J., Navarro, X., 2007. Effects of motor and sensory nerve transplants on amount and specificity of sciatic nerve regeneration. J. Neurosci. Res., 85(12):2800-2812.
[28]Lenz, R.W., Marchessault, R.H., 2005. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules, 6(1):1-8.
[29]Lewin-Kowalik, J., Marcol, W., Kotulska, K., Mandera, M., Klimczak, A., 2006. Prevention of neuroma formation. Neurol. Med. Chir., 46(2):62-68.
[30]Liu, B., Cai, S.X., Ma, K.W., Xu, Z.L., Dai, X.Z., Yang, L., Lin, C., Fu, X.B., Sung, K.L.P., Li, X.K., 2008. Fabrication of a PLGA-collagen peripheral nerve scaffold and investigation of its sustained release property in vitro. J. Mater. Sci. Mater. Med., 19(3):1127-1132.
[31]Liu, Q., Chen, G.Q., 2008. In vitro biocompatibility and degradation of terpolyester 3HB-co-4HB-co-3HHx, consisting of 3-hydroxybutyrate, 4-hydroxybutyrate and 3-hydroxyhexanoate. J. Biomater. Sci. Polym. Ed., 19(11):1521-1533.
[32]Liu, Y., Zhu, F., Dong, X., Peng, W., 2011. Digital design of scaffold for mandibular defect repair based on tissue engineering. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 12(9):769-779.
[33]Lu, M.C., Hsiang, S.W., Lai, T.Y., Yao, C.H., Lin, L.Y., Chen, Y.S., 2007. Influence of cross-linking degree of a biodegradable genipin-cross-linked gelatin guide on peripheral nerve regeneration. J. Biomater. Sci. Polym. Ed., 18(7):843-863.
[34]Marois, Y., Zhang, Z., 1999. In vivo biocompatibility and degradation studies of polyhydroxyoctanoate in the rat: a new sealant for the polyester arterial prosthesis. Tissue Eng., 5(4):369-386.
[35]Mohammadi, R., Azizi, S., Delirezh, N., Hobbenaghi, R., Amini, K., 2011. Functional recovery of sciatic nerve through inside-out vein graft in rats. Chin. J. Traumatol., 14(1):46-52.
[36]Mosahebi, A., Fuller, P., Wieberg, M., Tereghi, G., 2002. Effect of allogeneic schwann cell transplantation on peripheral nerve regeneration. Exp. Neurol., 173(2):213-223.
[37]Orts, W.J., Nobes, G.A.R., Kawada, J., Nguyen, S., Yu, G., Ravenelle, F., 2008. Poly(hydroxyalkanoates): biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Can. J. Chem., 86(6):628-640.
[38]Özmen, S., Ayhan, S., Latifoğlu, O., 2002. Stamp and paper method: a superior technique for the walking track analysis. Plast. Reconstr. Surg., 109(5):1760-1761.
[39]Raimondo, S., Fornaroa, M., Tosc, P., Battiston, B., Giacobini-Robecchib, M.G., Geunaa, S., 2011. Perspectives in regeneration and tissue engineering of peripheral nerves. Ann. Anat., 193(4):334-340.
[40]Rickett, T.A., Amoozgar, Z., Tuchek, C.A., Park, J., Yeo, Y., Shi, R., 2011. Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries. Biomacromolecules, 12(1):57-65.
[41]Sakar, M., Korkusuz, P., Cetinkaya, D., Denkbas, E.B., Temucin, C., Hazer, D.B., Bozkurt, G., 2011. The effect of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate (PHBHHX) and human mesenchymal stem cell (hMSC) on axonal regeneration in experimental sciatic nerve damage. J. Neurotrauma, 28(6):A22.
[42]Sariguney, Y., Yavuzer, R., Elmas, C., Yenicesu, I., Bolay, H., Atabay, K., 2008. Effect of platelet-rich plasma on peripheral nerve regeneration. J. Reconstr. Microsurg., 24(3):156-167.
[43]Sodian, R., Hoerstrup, S.P., Sperling, J.S., Daebritz, S.H., Martin, D.P., Schoen, F.J., Vacanti, J.P., Mayer, J.E.Jr., 2000. Tissue engineering of heart valves: in vitro experiences. Ann. Thorac. Surg., 70(1):140-144.
[44]Stang, F., Keilhoff, G., Fansa, H., 2009. Biocompatibility of different nerve tubes. Materials, 2(4):1480-1507.
[45]Stock, U.A., Nagashima, M., Khalil, P.N., Nollert, G.D., Herden, T., Sperling, J.S., Moran, A., 2000. Tissue-engineered valved conduits in the pulmonary circulation. J. Thorac. Cardiovasc. Surg., 119(4):732-740.
[46]Terenghi, G., 1999. Peripheral nerve regeneration and neurotrophic factors. J. Anat., 194(1):1-14.
[47]Varejão, A., Meek, M.F., Ferreira, A.J., 2001. Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J. Neurosci. Methods, 108(1):1-9.
[48]Vleggeert-Lankamp, C.L.A.M., 2007. The role of evaluation methods in the assessment of peripheral nerve regeneration through synthetic conduits: a systematic review. Laboratory investigation. J. Neurosurg., 107(6):1168-1189.
[49]Waitayawinyu, T., Parisi, D.M., Miller, B., Luria, S., Morton, H.J., Chin, S.H., Trumble, T.E., 2007. A comparison of polyglycolic acid versus type 1 collagen bioabsorbable nerve conduits in a rat model: an alternative to autografting. J. Hand Surg. Am., 32(10):1521-1529.
[50]Wang, X.D., Hu, W., Cao, Y., Yao, J., Wu, J., Gu, X.S., 2005. Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain, 128(8):1897-1910.
[51]Wu, Q., Wang, Y., Chen, G.Q., 2009. Medical application of microbial biopolyesters polyhydroxyalkanoate. Artif. Cells Blood Substit. Biotechnol., 37(1):1-12.
[52]Xie, S., Fang, N., Liu, S., Zhou, P., Zhang, Y., Wang, S., Gao, H., Pan, L., 2008. Differentiation of smooth muscle progenitor cells in peripheral blood and its application in tissue engineered blood vessels. J. Zhejiang Univ.-Sci. B, 9(12):923-930.
[53]Yang, Y.C., Shen, C.C., Cheng, H.C., Liu, B.S., 2011. Sciatic nerve repair by reinforced nerve conduits made of gelatin-tricalcium phosphate composites. J. Biomed. Mater. Res. A, 96(2):288-300.
[54]Yang, Y.M., Ding, F., Wu, H., Hu, W., Liu, W., Liu, J., Gu, X., 2007. Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials, 28(36):5526-5535.
[55]Yang, Y.M., Yuan, X.L., Ding, F., Yao, D.B., Gu, Y., Liu, J., Gu, X.S., 2011. Repair of rat sciatic nerve gap by a silk fibroin-based scaffold added with bone marrow mesenchymal stem cells. Tissue Eng. A, 17(17-18):2231-2244.
[56]Young, R.C., Wiberg, M., Terenghi, G., 2002. Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long-gap repair in peripheral nerves. Br. J. Plast. Surg., 55(3):235-240.
Open peer comments: Debate/Discuss/Question/Opinion
<1>