Full Text:   <4145>

Summary:  <2463>

CLC number: R318.08

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-03-19

Cited: 5

Clicked: 9551

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.4 P.382-392

http://doi.org/10.1631/jzus.B1300132


Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering*


Author(s):  Peng-yan Qiao1, Fang-fang Li1, Li-min Dong2, Tao Xu3, Qiu-fei Xie1,4

Affiliation(s):  1. Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China; more

Corresponding email(s):   xieqiuf@163.com

Key Words:  Injectable scaffold, Calcium phosphate cement, Osteoblast, Microencapsulation, Cell release, Chitosan


Peng-yan Qiao, Fang-fang Li, Li-min Dong, Tao Xu, Qiu-fei Xie. Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering[J]. Journal of Zhejiang University Science B, 2014, 15(4): 382-392.

@article{title="Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering",
author="Peng-yan Qiao, Fang-fang Li, Li-min Dong, Tao Xu, Qiu-fei Xie",
journal="Journal of Zhejiang University Science B",
volume="15",
number="4",
pages="382-392",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300132"
}

%0 Journal Article
%T Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering
%A Peng-yan Qiao
%A Fang-fang Li
%A Li-min Dong
%A Tao Xu
%A Qiu-fei Xie
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 4
%P 382-392
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300132

TY - JOUR
T1 - Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering
A1 - Peng-yan Qiao
A1 - Fang-fang Li
A1 - Li-min Dong
A1 - Tao Xu
A1 - Qiu-fei Xie
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 4
SP - 382
EP - 392
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300132


Abstract: 
Objective: To deliver cells deep into injectable calcium phosphate cement (CPC) through alginate-chitosan (AC) microcapsules and investigate the biological behavior of the cells released from microcapsules into the CPC. Methods: Mouse osteoblastic MC3T3-E1 cells were embedded in alginate and AC microcapsules using an electrostatic droplet generator. The two types of cell-encapsulating microcapsules were then mixed with a CPC paste. MC3T3-E1 cell viability was investigated using a Wst-8 kit, and osteogenic differentiation was demonstrated by an alkaline phosphatase (ALP) activity assay. Cell attachment in CPC was observed by an environment scanning electron microscopy. Results: Both alginate and AC microcapsules were able to release the encapsulated MC3T3-E1 cells when mixed with CPC paste. The released cells attached to the setting CPC scaffolds, survived, differentiated, and formed mineralized nodules. Cells grew in the pores concomitantly created by the AC microcapsules in situ within the CPC. At Day 21, cellular ALP activity in the AC group was approximately four times that at Day 7 and exceeded that of the alginate microcapsule group (P<0.05). Pores formed by the AC microcapsules had a diameter of several hundred microns and were spherical compared with those formed by alginate microcapsules. Conclusions: AC microcapsule is a promising carrier to release seeding cells deep into an injectable CPC scaffold for bone engineering.

海藻酸钠-壳聚糖微囊化成骨细胞复合磷酸钙骨水泥的体外研究

研究目的:本研究应用海藻酸钠-壳聚糖微囊保护成骨细胞,接种到β-磷酸三钙/磷酸钙骨水泥(β-TCP/CPC)浆料中,使β-TCP/CPC骨修复材料具有一定的细胞活性,同时提高固化后材料的孔隙率和孔径,以最终实现提高β-TCP/CPC 骨水泥的降解速度,加快成骨和骨修复。
创新要点:本研究首次应用海藻酸钠-壳聚糖微胶囊包封成骨细胞与CPC浆料复合,复合后实现自动细胞释放,释放出的细胞具有良好的生物学活性。
研究方法:(1)高压静电成囊法制备载小鼠成骨前体细胞(MC3T3-E1)的海藻酸钙和海藻酸钠-壳聚糖微胶囊;(2)微囊化MC3T3-E1细胞,进行体外培养,使用细胞计数试剂盒(CCK-8)检测细胞活性,并用钙黄绿素-AM(Calcein-AM)和碘化丙啶(PI)进行活死细胞双重染色;(3)微囊化MC3T3-E1细胞与β-TCP/CPC浆料复合培养后,激光共聚焦扫描显微镜和环境扫描电子显微镜观测细胞在材料上的释放、粘附,CCK-8法检测材料上细胞的活力,碱性磷酸酶(ALP)检测观察细胞的分化状况,茜素红染色观察释放细胞的矿化能力。
重要结论:海藻酸钠-壳聚糖微胶囊可作为可注射磷酸钙骨水泥内部接种成骨细胞并实现细胞释放的良好载体,释放出的成骨细胞具有良好的生物学活性。

关键词:可注射支架;磷酸钙骨水泥;成骨细胞;微囊化;细胞释放;壳聚糖

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Ambrosio, A.M., Sahota, J.S., Khan, Y., 2001. A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. J Biomed Mater Res, 58(3):295-301. 


[2] Brown, W., Chow, L.C., 1983. A new calcium-phosphate setting cement. J Dent Res, 62(SI):672

[3] Chen, W., Zhou, H., Weir, M.D., 2012. Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater, 8(6):2297-2306. 


[4] Chow, L.C., 2000. Calcium phosphate cements: chemistry, properties, and applications.  Mineralization in Natural and Synthetic Biomaterials. Warrendale, Materials Research Society,USA :27-37. 

[5] de Ruijter, J.E., Brugge, P.J., Dieudonne, S.C., 2001. Analysis of integrin expression in U2OS cells cultured on various calcium phosphate ceramic substrates. Tissue Eng, 7(3):279-289. 


[6] Deville, S., Saiz, E., Tomsia, A.P., 2006. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32):5480-5489. 


[7] Ding, S.J., 2007. Biodegradation behavior of chitosan/calcium phosphate composites. J Non-Cryst Solids, 353(24-25):2367-2373. 


[8] Drury, J.L., Mooney, D.J., 2003. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 24(24):4337-4351. 


[9] Friedman, C.D., Costantino, P.D., Takagi, S., 1998. BoneSource™ hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res, 43(4):428-432. 


[10] Gombotz, W.R., Wee, S.F., 1998. Protein release from alginate matrices. Adv Drug Deliv Rev, 31(3):267-285. 


[11] Habibovic, P., Barralet, J.E., 2011. Bioinorganics and biomaterials: bone repair. Acta Biomater, 7(8):3013-3026. 


[12] Hong, D., Chen, H.X., Yu, H.Q., 2010. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells. Exp Cell Res, 316(14):2291-2300. 


[13] Klammert, U., Reuther, T., Jahn, C., 2009. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater, 5(2):727-734. 


[14] Kretlow, J.D., Young, S., Klouda, L., 2009. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater, 21(32-33):3368-3393. 


[15] Laurencin, C.T., Ambrosio, A.M., Borden, M.D., 1999. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng, 1(1):19-46. 


[16] Lavik, E., Langer, R., 2004. Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol, 65(1):1-8. 


[17] Lee, K.Y., Mooney, D.J., 2012. Alginate: properties and biomedical applications. Prog Polym Sci, 37(1):106-126. 


[18] Mao, J.J., Giannobile, W.V., Helms, J.A., 2006. Craniofacial tissue engineering by stem cells. J Dent Res, 85(11):966-979. 


[19] Markusen, J.F., Mason, C., Hull, D.A., 2006. Behavior of adult human mesenchymal stem cells entrapped in alginate-GRGDY beads. Tissue Eng, 12(4):821-830. 


[20] Miyamoto, Y., Ishikawa, K., Fukao, H., 1995.  In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials, 16(11):855-860. 


[21] Moreau, J.L., Xu, H.H., 2009. Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate-chitosan composite scaffold. Biomaterials, 30(14):2675-2682. 


[22] Moreau, J.L., Weir, M.D., Xu, H.H., 2009. Self-setting collagen-calcium phosphate bone cement: mechanical and cellular properties. J Biomed Mater Res A, 91(2):605-613. 


[23] Muzzarelli, R.A., 2011. Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohyd Polym, 83(4):1433-1445. 


[24] Qiao, P., Wang, J., Xie, Q., 2013. Injectable calcium phosphate-alginate-chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivoMat Sci Eng C Mater, 33(8):4633-4639. 


[25] Salgado, A.J., Coutinho, O.P., Reis, R.L., 2004. Bone tissue engineering: state of the art and future trends. Macromol Biosci, 4(8):743-765. 


[26] Shindo, M.L., Costantino, P.D., Friedman, C.D., 1993. Facial skeletal augmentation using hydroxyapatite cement. Arch Otolaryngol Head Neck Surg, 119(2):185-190. 


[27] Simon, C.J., Guthrie, W.F., Wang, F.W., 2004. Cell seeding into calcium phosphate cement. J Biomed Mater Res A, 68(4):628-639. 


[28] Taira, M., Nakao, H., Takahashi, J., 2003. Effects of two vitamins, two growth factors and dexamethasone on the proliferation of rat bone marrow stromal cells and osteoblastic MC3T3-E1 cells. J Oral Rehabil, 30(7):697-701. 


[29] Taqieddin, E., Amiji, M., 2004. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules. Biomaterials, 25(10):1937-1945. 


[30] van den Vreken, N.M., Pieters, I.Y., Declercq, H.A., 2010. Characterization of calcium phosphate cements modified by addition of amorphous calcium phosphate. Acta Biomater, 6(2):617-625. 


[31] Weir, M.D., Xu, H.H.K., 2010. Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair. Acta Biomater, 6(10):4118-4126. 


[32] Weir, M.D., Xu, H.H., Simon, C.J., 2006. Strong calcium phosphate cement-chitosan-mesh construct containing cell-encapsulating hydrogel beads for bone tissue engineering. J Biomed Mater Res A, 77(3):487-496. 


[33] Xie, H.G., Li, X.X., Lv, G.J., 2010. Effect of surface wettability and charge on protein adsorption onto implantable alginate-chitosan-alginate microcapsule surfaces. J Biomed Mater Res A, 92(4):1357-1365. 


[34] Xie, J., Wang, C.H., 2007. Electrospray in the dripping mode for cell microencapsulation. J Colloid Interface Sci, 312(2):247-255. 


[35] Xu, H.H., Carey, L.E., Simon, C.J., 2007. Premixed calcium phosphate cements: synthesis, physical properties, and cell cytotoxicity. Dent Mater, 23(4):433-441. 


[36] Xu, H.H., Zhao, L., Weir, M.D., 2010. Stem cell-calcium phosphate constructs for bone engineering. J Dent Res, 89(12):1482-1488. 


[37] Zhao, L., Weir, M.D., Xu, H.H., 2010. Human umbilical cord stem cell encapsulation in calcium phosphate scaffolds for bone engineering. Biomaterials, 31(14):3848-3857. 


[38] Zhao, L., Weir, M.D., Xu, H.H., 2010. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials, 31(25):6502-6510. 


[39] Zhao, L., Tang, M., Weir, M.D., 2011. Osteogenic media and rhBMP-2-induced differentiation of umbilical cord mesenchymal stem cells encapsulated in alginate microbeads and integrated in an injectable calcium phosphate-chitosan fibrous scaffold. Tissue Eng Part A, 17(7-8):969-979. 


[40] Zhou, H., Xu, H.H., 2011. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials, 32(30):7503-7513. 


[41] Zhou, H., Chen, W., Weir, M.D., 2012. Biofunctionalized calcium phosphate cement to enhance the attachment and osteodifferentiation of stem cells released from fast-degradable alginate-fibrin microbeads. Tissue Eng Part A, 18(15-16):1583-1595. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE